Tropospheric Ozone Concentration in Russia in 2022

V. V. Lunin, M. P. Popovich, and S. N. Tkachenko, Physical Chemistry of Ozone (MSU, Moscow, 1998) [in Russian].

Google Scholar 

S. P. Perov and A. Kh. Khrgian, Modern Problems of Atmospheric Ozone (Gidrometeoizdat, Leningrad, 1980) [in Russian].

Google Scholar 

S. V. Razumovskii and G. E. Zaikov, Ozone and IIts Reactions with Organic Compounds (Kinetics and Mechanics) (Nauka, Moscow, 1974) [in Russian].

Google Scholar 

Harmful Chemicals. Inorganic Compounds of Groups V–VIII, Ed. by V.A. Filov (Khimiya, Leningrad, 1989) [in Russian].

Google Scholar 

B. D. Belan, Tropospheric Ozone (Publishing House of IAO SB RAS, Tomsk, 2010) [in Russian].

Google Scholar 

J. Lelieveld, J. S. Evans, M. Fnais, D. Giannadaki, and A. Pozzer, “The contribution of outdoor air pollution sources to premature mortality on a global scale,” Nature 525 (7569), 367–371.

D. L. Mauzerall and X. Wang, “Protecting agricultural crops from the effects of tropospheric ozone exposure: Reconciling science and standart setting in the United States, Europa, and Asia,” Ann. Rev. Energy Environ, No. 26, 237–268 (2001).

Google Scholar 

“Air pollution takes a big bite out of Asia’s grain crops,” Nature 601 (7894), 487 (2022).

B. Wang, H. H. Shugart, and M. T. Lerdau, “Sensitivity of global greenhouse gas budgets to tropospheric ozone pollution mediated by the biosphere,” Environ. Res. Lett. 12 (8), 084001 (2017).

Article  ADS  Google Scholar 

A. Anav, A. De Marco, A. Collalti, L. Emberson, Z. Feng, D. Lombardozzi, P. Sicard, T. Verbeke, N. Viovy, M. Vitale, and E. Paoletti, “Legislative and functional aspects of different metrics used for ozone risk assessment to forests,” Environ. Pollut. 295, 118690 (2022).

Article  Google Scholar 

A. P. Altshuller and A. F. Wartburg, “The interaction of ozone with plastic metallic materials in a dynamic flow system,” Intern. J. Air Water Pollut. 4 (1–2), 70–78 (1961).

Google Scholar 

R. L. Daubendick and J. G. Calvert, “The reaction of ozone with perfluorinated polyolefins,” Environ. Lett. 6 (4), 253–272 (1974).

Article  Google Scholar 

A. Screpani and A. DeMarco, “Corrosion on cultural heritage buildings in Italy: a role for ozone?,” Environ. Pollut. 157 (5), 1513–1520 (2009).

Article  Google Scholar 

B. K. Coleman, H. Destaillats, A. T. Hodgson, and W. W. Nazaroff, “Ozone consumption and volatile byproduct formation from surface reactions with aircraft cabin materials and clothing fabrics,” Atmos. Environ. 42 (4), 642–654 (2008).

Article  ADS  Google Scholar 

R. G. Rice, “Century 21—pregnant with ozone,” Ozone Sci. Engeen. 24 (1), 1–15 (2002).

Article  ADS  Google Scholar 

M. J. Rowlinson, A. Rap, D. S. Hamilton, R. J. Pope, S. Hantson, S. R. Arnold, J. O. Kaplan, A. Arneth, M. P. Chipperfield, P. M. Forster, and L. Nieradzik, “Tropospheric ozone radiative forcing uncertainty due to pre-industrial fire and biogenic emissions,” Atmos. Chem. Phys. 20 (18), 10 937–10 951 (2020).

Article  Google Scholar 

F. Leung, S. Sitch, A. P. K. Tai, A. J. Wiltshire, J. L. Gornall, G. A. Folberth, and N. Unger, “CO2 fertilization of crops offsets yield losses due to future surface ozone damage and climate change,” Environ. Res. Lett. 17 (7), 074007 (2022).

Article  ADS  Google Scholar 

J. Zhang, Y. Gao, L. R. Leung, K. Luo, M. Wang, Y. Zhang, M. L. Bell, and J. Jianren Fan, “Isolating the modulation of mean warming and higher-order temperature changes on ozone in a changing climate over the contiguous United States,” Environ. Res. Lett. 17 (9), 094005 (2022).

Article  ADS  Google Scholar 

X. Zhang, D. W. Waugh, G. H. Kerr, and S. M. Miller, “Surface ozone-temperature relationship: The meridional gradient ratio approximation,” Geophys. Rev. Lett. 49 (13) (2022).

N. Zannoni, P. S. J. Lakey, Y. Won, M. Shiraiwa, D. Rim, C. J. Weschler, N. Wang, L. Ernle, M. Li, G. Beko, P. Wargocki, and J. Williams, “The human oxidation field,” Science 377 (6610), 1071–1077 (2022).

Article  ADS  Google Scholar 

A. O. Langford, C. J. Senff, IIR. J. Alvarez, K. C. Aikin, S. Baidar, T. A. Bonin, W. A. Brewer, J. Brioude, S. S. Brown, J. D. Burley, D. J. Caputi, S. A. Conley, P. D. Cullis, Z. C. J. Decker, S. Evan, G. Kirgis, M. Lin, M. Pagowski, J. Peischl, I. Petropavlovskikh, R. B. Pierce, T. B. Ryerson, S. P. Sandberg, C. W. Sterling, A. M. Weickmann, and L. Zhang, “The fires, Asian, and Stratospheric Transport—Las Vegas Ozone Study (FAST-LVOS),” Atmos. Chem. Phys. 22 (3), 1707–1737 (2022).

Article  ADS  Google Scholar 

S.-W. Kim, B. C. McDonald, S. Seo, K.-M. Kim, and M. Trainer, “Understanding the paths of surface ozone abatement in the Los Angeles basin,” J. Geophys. Res.: Atmos. 127 (4) (2022).

L. Gouldsbrough, R. Hossaini, E. Eastoe, and P. Y. Young, “A temperature dependent extreme value analysis of UK surface ozone, 1980–2019,” Atmos. Environ. 273, 118975 (2020).

Article  Google Scholar 

J. Cao, X. Qiu, Y. Liu, X. Yan, J. Gao, and L. Peng, “Identifying the dominant driver of elevated surface ozone concentration in North China Plain during summertime 2012–2017,” Environ. Pollut. 300, 118912 (2022).

Article  Google Scholar 

K. Wu, Y. Wang, Y. Qiao, Y. Liu, S. Wang, X. Yang, H. Wang, Y. Lu, X. Zhang, and Y. Lei, “Drivers of 2013–2020 ozone trends in the Sichuan Basin, China: Impacts of meteorology and precursor emission changes,” Environ. Pollut. 300, 118914 (2022).

Article  Google Scholar 

J. Gao, Y. Li, Z. Xie, B. Hue, L. Wang, F. Bao, and S. Fan, “The impact of the aerosol reduction on the worsening ozone pollution over the Beijing–Tianjin–Hebei region via influencing photolysis rates,” Sci. Total Environ. 821, 153197 (2022).

Article  ADS  Google Scholar 

R. G. Derwent and D. D. Parrish, “Analysis and assessment of the observed long-term changes over three decades in ground-level ozone across north-west Europe from 1989–2018,” Atmos. Environ. 286, 119222 (2022).

Article  Google Scholar 

https://mosecom.mos.ru/. Cited April 3, 2023.

www.mos.ru/eco/documents/doklady/view/. Cited April 3, 2023.

N. S. Ivanova, G. M. Kruchenitskii, I. N. Kuznetsova, V. A. Lapchenko, and V. A. Statnikov, “Ozone content over the Russian Federation in 2018,” Russ. Meteorol. Hydrol. 44 (2), 152–158 (2019).

Article  Google Scholar 

N. S. Ivanova, I. N. Kuznetsova, and E. A. Lezina, “Ozone content over the Russian Federation in the third quarter of 2022,” Meteorol. Gidrol., No. 11, 138–142 (2022).

Review of the State and Pollution of the Environment in the Russian Federation for 2020 (Rosgidromet, Moscow, 2021) [in Russian].

Review of the Background state of the Natural Environment in the CIS Countries for 2021 (Yu. A. Izrael Institute of Global Climate and Ecology, Moscow, 2022 [in Russian]

V. V. Andreev, M. Yu. Arshinov, B. D. Belan, D. K. Davydov, N. F. Elansky, G. S. Zhamsueva, A. S. Zayakhanov, G. A. Ivlev, A. V. Kozlov, S. N. Kotel’nikov, I. N. Kuznetsova, V. A. Lapchenko, E. A. Lezina, O. V. Postylyakov, D. E. Savkin, I. A. Senik, E. V. Stepanov, G. N. Tolmachev, A. V. Fofonov, I. V. Chelibanovi, V. P. Chelibanov, and V. V. Shirotov, “Surface ozone concentration over Russian territory in the first half of 2020,” Atmos. Ocean. Opt. 33 (6), 671–681 (2020).

Article  Google Scholar 

V. V. Andreev, M. Yu. Arshinov, B. D. Belan, S. B. Belan, D. K. Davydov, V. I. Demin, N. F. Elanskii, G. S. Zhamsueva, A. S. Zayakhanov, G. A. Ivlev, A. V. Kozlov, S. N. Kotel’nikov, I. N. Kuznetsova, V. A. Lapchenko, E. A. Lezina, O. V. Postylyakov, D. E. Savkin, I. A. Senik, E. V. Stepanov, G. N. Tolmachev, A. V. Fofonov, I. V. Chelibanov, V. P. Chelibanov, V. V. Shirotov, and K. A. Shukurov, “Surface ozone concentration in Russia in the second half of 2020,” Atmos. Ocean. Opt. 34 (4), 347–356 (2021).

Article  Google Scholar 

V. V. Andreev, M. Yu. Arshinov, B. D. Belan, S. B. Belan, D. K. Davydov, V. I. Deminc, N. V. Dudorova, N. F. Elansky, G. S. Zhamsueva, A. S. Zayakhanov, G. A. Ivlev, A. V. Kozlov, L. V. Konovaltseva, S. N. Kotel’nikov, I. N. Kuznetsova, V. A. Lapchenko, E. A. Lezina, V. A. Obolkin, O. V. Postylyakov, V. L. Potemkin, D. E. Savkin, I. A. Senik, E. V. Stepanov, G. N. Tolmachev, A. V. Fofonov, T. V. Khodzher, I. V. Chelibanov, V. P. Chelibanov, V. V. Shirotov, and K. A. Shukurov, “Tropospheric ozone concentration on the territory of Russia in 2021,” Atmos. Ocean. Opt. 35 (6), 741–757 (2022).

Article  Google Scholar 

SanPiN 1.2.3685-21. https://www.rospotrebnadzor.ru/ files/news/GN_sreda%20_obitaniya_compressed.pdf. Cited April 3, 2023.

V. A. Isidorov, Organic Chemistry of the Atmosphere (Khimizdat, St. Petersburg, 2001) [in Russian].

Google Scholar 

S. Shi, B. Zhu, G. Tang, C. Liu, J. An, D. Liu, J. Xu, H. Xu, H. Liao, and Y. Zhang, “Observational evidence of aerosol radiation modifying photochemical ozone profiles in the lower troposphere,” Geophys. Rev. Lett. 49 (15) (2022).

X. Zhang, W. Xub, G. Zhang, W. Lin, H. Zhao, S. Ren, G. Zhou, J. Chen, and X. Xu, “First long-term surface ozone variations at an agricultural site in the North China Plain: Evolution under changing meteorology and emissions,” Sci. Total. Environ. 860, 160520 (2023).

Article  ADS  Google Scholar 

C. Li, F. Li, Q. Cheng, Y. Guod, Z. Zhang, X. Liu, Y. Qud, J. An, Y. Liu, and S. Zhang, “Divergent summertime surface O3 pollution formation mechanisms in two typical Chinese cities in the Beijing–Tianjin–Hebei region and Fenwei Plain,” Sci. Total. Environ. 870, 161868 (2023).

Article  ADS  Google Scholar 

I. A. Sennik, N. F. Elansky, I. B. Belikov, L. V. Lisitsyna, V. V. Galaktionov, and Z. V. Kortunova, “Main patterns of the temporal variability of surface ozone in the region of the town of Kislovodsk at 870 and 2070 m above sea level,” Izv., Atmos. Ocean. Phys. 41 (1), 67–79 (2005).

Google Scholar 

N. P. Shakina, A. R. Ivanova, N. F. Elansky, and T. A. Markova, “Transcontinental observations of surface ozone concentration in the TROICA experiments: 2. The effect of the stratosphere-troposphere exchange,” Izv. Atmos. Ocean. Phys. 37 (2001).

N. F. Elansky, “Effect of a jet stream on the ozone layer,” Izv. Akad. Nauk SSSR. Fiz. Atmos. Okeana 11 (9), 916–925 (1975).

Google Scholar 

H. Ueno and N. Tsunematsu, “Sensitivity of ozone production to increasing temperature and reduction of precursors estimated from observation data,” Atmos. Environ. 214, 116818 (2019).

Article  Google Scholar 

W. Qian, M. Xu, and Y. Ai, “Anomaly-based synoptic analysis to identify and predict meteorological conditions of strong ozone events in North China,” Air Quality, Atmos. Health 15 (10), 1699–1711 (2022).

Article  Google Scholar 

J. Zhang, Y. Gao, L. R. Leung, K. Luo, M. Wang, Y. Zhang, M. L. Bell, and J. Fan, “Disentangling the mechanism of temperature and water vapor modulation on ozone under a warming climate,” Environ. Res. Lett. 7 (12), 124032 (2022).

Article  ADS  Google Scholar 

B. Sadeghi, M. Ghahremanloo, S. Mousavinezhad, Y. Lops, A. Pouyaei, and Y. Choi, “Contributions of meteorology to ozone variations: Application of deep learning and the Kolmogorov-Zurbenko filter,” Environ. Pollut. 310, 119863 (2022).

Article  Google Scholar 

S. Mousavinezhad, M. Ghahremanloo, Y. Choi, A. Pouyaei, N. Khorshidian, and B. Sadeghi, “Surface ozone trends and related mortality across the climate regions of the contiguous united states during the most recent climate period, 1991–2020,” Atmos. Environ. 300, 119693 (2023).

Article  Google Scholar 

E. Hertig, S. Jahn, and I. Kaspar-Ott, “Future local ground-level ozone in the european area from statistical downscaling projections considering climate and emission changes,” Earth’s Future 11 (2) (2023).

Y. Yao, K. Ma, C. He, Y. Zhang, Y. Lin, F. Fang, S. Li, and H. He, “Urban surface ozone concentration in mainland China during 2015–2020: Spatial clustering and temporal dynamics,” Int. J. Environ. Res. Public Health 20 (2), 3810 (2023).

Article  Google Scholar 

G. G. Anokhin, P. N. Antokhin, M. Yu. Arshinov, V. E. Barsuk, B. D. Belan, S. B. Belan, D. K. Davydov, G. A. Ivlev, A. V. Kozlov, V. S. Kozlov, M. V. Morozov, M. V. Panchenko, I. E. Penner, D. A. Pestunov, G. P. Sikov, D. V. Simonenkov, D. S. Sinitsyn, G. N. Tolmachev, D. V. Filippov, A. V. Fofonov, D. G. Chernov, V. S. Shamanaev, and V. P. Shmargunov, “OPTIK Tu-134 aicraft laboratory,” Opt. Atmos. Okeana 24 (9), 805–816 (2011).

Google Scholar 

B. D. Belan, G. Ancellet, I. S. Andreeva, P. N. Antokhin, V. G. Arshinova, M. Y. Arshinov, Y. S. Balin, V. E. Barsuk, S. B. Belan, D. G. Chernov, D. K. Davydov, A. V. Fofonov, G. A. Ivlev, S. N. Kotel’nikov, A. S. Kozlov, A. V. Kozlov, K. Law, A. V. Mikhal’chishin, I. A. Moseikin, S. V. Nasonov, P. Nedelec, O. V. Okhlopkova, S. E. Ol’kin, M. V. Panchenko, J.-D. Paris, I. E. Penner, I. V. Ptashnik, T. M. Rasskazchikova, I. K. Reznikova, O. A. Romanovskii, A. S. Safatov, D. E. Savkin, D. V. Simonenkov, T. K. Sklyadneva, G. N. Tolmachev, S. V. Yakovlev, and P. N. Zenkova, “Integrated airborne investigation of the air composition over the Russian sector of the Arctic,” Atmos. Meas. Tech. 15 (13), 3941–3967 (2022).

Article  Google Scholar 

P. N. Antokhin, M. Yu. Arshinov, B. D. Belan, S. B. Belan, T. K. Sklyadneva, and G. N. Tolmachev, “Many-year variability of ozone and aerosol near Tomsk and justification of the ten-year prediction of their yearly average concentrations,” Opt. Atmos. Okeana 23 (9), 772–776 (2010).

Google Scholar 

B. D. Belan, G. N. Tolmachev, and A. V. Fofonov, “Verti

留言 (0)

沒有登入
gif