Bhatt P, Kloock C, Comenzo R. Relapsed/Refractory Multiple Myeloma: A Review of Available Therapies and Clinical Scenarios Encountered in Myeloma Relapse. Curr Oncol. 2023;30(2):2322–47.
Article PubMed PubMed Central Google Scholar
Plakhova N, et al. Mesenchymal stromal cell senescence in haematological malignancies. Cancer Metastasis Rev. 2023;42(1):277–96.
Cippitelli M, et al. Role of NF-κB Signaling in the Interplay between Multiple Myeloma and Mesenchymal Stromal Cells. Int J Mol Sci. 2023;24(3).
Harmer D, Falank C, Reagan MR. Interleukin‑6 Interweaves the Bone Marrow Microenvironment, Bone Loss, and Multiple Myeloma. Front Endocrinol (lausanne). 2018;9:788.
Kurzrock R, et al. A phase I, open-label study of siltuximab, an anti-IL‑6 monoclonal antibody, in patients with B‑cell non-Hodgkin lymphoma, multiple myeloma, or Castleman disease. Clin Cancer Res. 2013;19(13):3659–70.
Article CAS PubMed Google Scholar
Orlowski RZ, et al. A phase 2, randomized, double-blind, placebo-controlled study of siltuximab (anti-IL‑6 mAb) and bortezomib versus bortezomib alone in patients with relapsed or refractory multiple myeloma. Am J Hematol. 2015;90(1):42–9.
Article CAS PubMed PubMed Central Google Scholar
Tupitsyn N, et al. Functional interaction of the gp80 and gp130 IL‑6 receptors in human B cell malignancies. Clin Lab Haematol. 1998;20(6):345–52.
Article CAS PubMed Google Scholar
Bolomsky A, Young RM. Pathogenic signaling in multiple myeloma. Semin Oncol. 2022;49(1):27–40.
Article CAS PubMed PubMed Central Google Scholar
Tuncel FC, et al. Epigenetic and genetic investigation of SOCS‑1 gene in patients with multiple myeloma. Blood Res. 2022;57(4):250–5.
Article CAS PubMed PubMed Central Google Scholar
Galm O, et al. SOCS‑1, a negative regulator of cytokine signaling, is frequently silenced by methylation in multiple myeloma. Blood. 2003;101(7):2784–8.
Article CAS PubMed Google Scholar
Pichiorri F, et al. MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis. Proc Natl Acad Sci USA. 2008;105(35):12885–90.
Article ADS CAS PubMed PubMed Central Google Scholar
Görgün, G., et al., Immunomodulatory effects of lenalidomide and pomalidomide on interaction of tumor and bone marrow accessory cells in multiple myeloma. Blood, The Journal of the American Society of Hematology, 2010. 116(17): p. 3227–3237.
To KF, et al. Constitutional activation of IL-6-mediated JAK/STAT pathway through hypermethylation of SOCS‑1 in human gastric cancer cell line. Br J Cancer. 2004;91(7):1335–41.
Article CAS PubMed PubMed Central Google Scholar
Beldi-Ferchiou A, et al. Abnormal repression of SHP‑1, SHP‑2 and SOCS‑1 transcription sustains the activation of the JAK/STAT3 pathway and the progression of the disease in multiple myeloma. PLoS ONE. 2017;12(e0174835):4.
Mancusi R, Monje M. The neuroscience of cancer. Nature. 2023;618(7965):467–79.
Article ADS CAS PubMed Google Scholar
Carey P, et al. Metalloproteinases in Ovarian Cancer. Int J Mol Sci. 2021;22(7).
Yang EV, et al. Norepinephrine up-regulates the expression of vascular endothelial growth factor, matrix metalloproteinase (MMP)-2, and MMP‑9 in nasopharyngeal carcinoma tumor cells. Cancer Res. 2006;66(21):10357–64.
Article CAS PubMed Google Scholar
Gornikiewicz A, et al. Catecholamines up-regulate lipopolysaccharide-induced IL‑6 production in human microvascular endothelial cells. Faseb J. 2000;14(9):1093–100.
Article CAS PubMed Google Scholar
Liu R, et al. Bacterial infections exacerbate myeloma bone disease. J Transl Med. 2022;20(1):16.
Article CAS PubMed PubMed Central Google Scholar
Szymanski MW, Singh DP. Isoproterenol, in StatPearls. 2023. Statpearls Publ Copyr. 2023;. StatPearls Publishing LLC.: Treasure Island (FL).
Bigley AB, et al. Acute exercise preferentially redeploys NK-cells with a highly-differentiated phenotype and augments cytotoxicity against lymphoma and multiple myeloma target cells. Part II: impact of latent cytomegalovirus infection and catecholamine sensitivity. Brain Behav Immun. 2015;49:59–65.
Article CAS PubMed Google Scholar
Rodrigues W, et al. Low dose of propranolol down-modulates bone resorption by inhibiting inflammation and osteoclast differentiation. British J Pharmacology. 2012;165(7):2140–51.
da Silva FN, et al. Propranolol treatment lowers blood pressure, reduces vascular inflammatory markers and improves endothelial function in obese mice. Pharmacol Res. 2017;122:35–45.
Michalovicz LT, et al. The β‑adrenergic receptor blocker and anti-inflammatory drug propranolol mitigates brain cytokine expression in a long-term model of Gulf War Illness. Proc Natl Sci Counc Repub China B. 2021;285:119962.
Hwa YL, et al. Beta-blockers improve survival outcomes in patients with multiple myeloma: a retrospective evaluation. Am J Hematol. 2017;92(1):50–5.
Article CAS PubMed Google Scholar
Nair R, et al. β adrenergic signaling regulates hematopoietic stem and progenitor cell commitment and therapy sensitivity in multiple myeloma. Haematologica. 2022;107(9):2226–31.
Article CAS PubMed PubMed Central Google Scholar
Liu Y, Yu X, Zhuang J. Epinephrine Stimulates Cell Proliferation and Induces Chemoresistance in Myeloma Cells through the β‑Adrenoreceptor in vitro. Acta Haematol. 2017;138(2):103–10.
Article CAS PubMed Google Scholar
Liu S, Costa M. The role of NUPR1 in response to stress and cancer development. Toxicol Appl Pharmacol. 2022;454:116244.
Article CAS PubMed Google Scholar
Yang EV, et al. VEGF is differentially regulated in multiple myeloma-derived cell lines by norepinephrine. Brain Behav Immun. 2008;22(3):318–23.
Article ADS PubMed Google Scholar
Johannesdottir SA, et al. Use of β‑blockers and mortality following ovarian cancer diagnosis: a population-based cohort study. Bmc Cancer. 2013;13:85.
Article PubMed PubMed Central Google Scholar
Nilsson MB, Langley RR, Fidler IJ. Interleukin‑6, secreted by human ovarian carcinoma cells, is a potent proangiogenic cytokine. Cancer Res. 2005;65(23):10794–800.
Article CAS PubMed PubMed Central Google Scholar
Patel SA, et al. IL6 Mediates Suppression of T‑ and NK-cell Function in EMT-associated TKI-resistant EGFR-mutant NSCLC. Clin Cancer Res. 2023;29(7):1292–304.
Article CAS PubMed PubMed Central Google Scholar
Men L, et al. IL-6/gp130/STAT3 signaling contributed to the activation of the PERK arm of the unfolded protein response in response to chronic β‑adrenergic stimulation. Free Radic Biol Med. 2023;.
Zhang H, et al. The gp130/STAT3 signaling pathway mediates β‑adrenergic receptor-induced atrial natriuretic factor expression in cardiomyocytes. Febs J. 2008;275(14):3590–7.
Article CAS PubMed Google Scholar
Päth G. n., et al., Human breast adipocytes express interleukin‑6 (IL-6) and its receptor system: increased IL‑6 production by β‑adrenergic activation and effects of IL‑6 on adipocyte function. J Clin Endocrinol Metab. 2001;86(5):2281–8.
Yang EV, et al. Norepinephrine upregulates VEGF, IL‑8, and IL‑6 expression in human melanoma tumor cell lines: implications for stress-related enhancement of tumor progression. Brain Behav Immun. 2009;23(2):267–75.
Article MathSciNet CAS PubMed Google Scholar
Bernabé DG, et al. Stress hormones increase cell proliferation and regulates interleukin‑6 secretion in human oral squamous cell carcinoma cells. Brain Behav Immun. 2011;25(3):574–83.
Men L, et al. IL-6/gp130/STAT3 signaling contributed to the activation of the PERK arm of the unfolded protein response in response to chronic β‑adrenergic stimulation. Free Radic Biol Med. 2023;205:163–74.
Article CAS PubMed Google Scholar
Xu L, et al. miR-451a targeting IL-6R activates JAK 2/STAT3 pathway, thus regulates proliferation and apoptosis of multiple myeloma cells. J Musculoskelet Neuronal Interact. 2022;22(2):251–60.
MathSciNet CAS PubMed PubMed Central Google Scholar
Liu Y, et al. IL‑6 Regulates the Chemosensitivity of Drug-Resistant Multiple Myeloma Cell Lines to Bortezomib through STAT3/Notch Signaling Pathway. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2022;30(5):1474–81.
MathSciNet PubMed Google Scholar
Juge-Morineau N, et al. The gp 130 family cytokines IL‑6, LIF and OSM but not IL-11 can reverse the anti-proliferative effect of dexamethasone on human myeloma cells. Br J Haematol. 1995;90(3):707–10.
Comments (0)