In vitro and in silico Evaluation of the Anti-Biofilm Activity of Histatin 5 against Streptococcus mutans

Abdelrazek NA, Elkhatib WF, Raafat MM, Aboulwafa MM (2019) Experimental and bioinformatics study for production of L-asparaginase from Bacillus licheniformis: a promising enzyme for medical application. Amb Express 9(1):39. https://doi.org/10.1186/s13568-019-0751-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Afriza D, Suriyah W, Ichwan S (2018) In silico analysis of molecular interactions between the anti-apoptotic protein survivin and dentatin, nordentatin, and quercetin. Paper presented at the Journal of Physics: Conference Series. https://doi.org/10.1088/1742-6596/1073/3/032001

Boisen G, Davies JR, Neilands J (2021) Acid tolerance in early colonizers of oral biofilms. BMC Microbiol 21(1):1–9. https://doi.org/10.1186/s12866-021-02089-2

Article  CAS  Google Scholar 

Chakansin C, Yostaworakul J, Warin C, Kulthong K, Boonrungsiman S (2022) Resazurin rapid screening for antibacterial activities of organic and inorganic nanoparticles: potential, limitations and precautions. Anal Biochem 637:114449. https://doi.org/10.1016/j.ab.2021.114449

Article  CAS  PubMed  Google Scholar 

Cruz CD, Shah S, Tammela P (2018) Defining conditions for biofilm inhibition and eradication assays for Gram-positive clinical reference strains. BMC Microbiol 18(1):1–9. https://doi.org/10.1186/s12866-018-1321-6

Article  CAS  Google Scholar 

Emeka PM, Badger-Emeka LI, Ibrahim H-IM, Thirugnanasambantham K, Hussen J (2020) Inhibitory potential of mangiferin on glucansucrase producing Streptococcus mutans biofilm in dental plaque. Appl Sci 10(22):8297. https://doi.org/10.3390/app10228297

Article  CAS  Google Scholar 

Fernández-Presas A, Torres YM, González RG, Torres AR, Fauser IB, Barrera HR, Soriano JM (2018) Ultrastructural damage in Streptococcus mutans incubated with saliva and histatin 5. Arch Oral Biol 87:226–234. https://doi.org/10.1016/j.archoralbio.2018.01.004

Article  CAS  PubMed  Google Scholar 

Golshani S, Vatanara A, Balalaie S, Kadkhoda Z, Abdollahi M, Amin M (2023) Development of a novel histatin-5 mucoadhesive gel for the treatment of oral mucositis: in vitro characterization and in vivo evaluation. AAPS PharmSciTech 24(7):177. https://doi.org/10.1208/s12249-023-02632-6

Article  CAS  PubMed  Google Scholar 

Guo L, Hu W, He X, Lux R, McLean J, Shi W (2013) Investigating acid production by Streptococcus mutans with a surface-displayed pH-sensitive green fluorescent protein. PLoS ONE 8(2):e57182. https://doi.org/10.1371/journal.pone.0057182

Article  CAS  PubMed  PubMed Central  Google Scholar 

He Z, Huang Z, Jiang W, Zhou W (2019) Antimicrobial activity of cinnamaldehyde on Streptococcus mutans biofilms. Front Microbiol 10:2241. https://doi.org/10.3389/fmicb.2019.02241

Article  PubMed  PubMed Central  Google Scholar 

Helmerhorst EJ, Hodgson R, Van’t Hof W, Veerman E, Allison C, Amerongen N, A (1999) The effects of histatin-derived basic antimicrobial peptides on oral biofilms. J Dent Res 78(6):1245–1250. https://doi.org/10.1177/00220345990780060801

Article  CAS  PubMed  Google Scholar 

Huo L, Zhang K, Ling J, Peng Z, Huang X, Liu H, Gu L (2011) Antimicrobial and DNA-binding activities of the peptide fragments of human lactoferrin and histatin 5 against Streptococcus mutans. Arch Oral Biol 56(9):869–876. https://doi.org/10.1016/j.archoralbio.2011.02.004

Article  CAS  PubMed  Google Scholar 

Khurshid Z, Naseem M, Sheikh Z, Najeeb S, Shahab S, Zafar MS (2016) Oral antimicrobial peptides: types and role in the oral cavity. Saudi Pharm J 24(5):515–524. https://doi.org/10.1016/j.jsps.2015.02.015

Article  PubMed  Google Scholar 

Khurshid Z, Najeeb S, Mali M, Moin SF, Raza SQ, Zohaib S, Zafar MS (2017) Histatin peptides: pharmacological functions and their applications in dentistry. Saudi Pharm J 25(1):25–31. https://doi.org/10.1016/j.jsps.2016.04.027

Article  PubMed  Google Scholar 

Krzyściak W, Jurczak A, Kościelniak D, Bystrowska B, Skalniak A (2014) The virulence of Streptococcus mutans and the ability to form biofilms. Eur J Clin Microbiol Infect Dis 33:499–515. https://doi.org/10.1007/s10096-013-1993-7

Article  PubMed  Google Scholar 

Krzyściak W, Jurczak A, Piątkowski J, Kościelniak D, Gregorczyk-Maga I, Kołodziej I, Olczak-Kowalczyk D (2015) Effect of histatin-5 and lysozyme on the ability of Streptococcus mutans to form biofilms in vitro conditions. Postępy Higieny I Medycyny Doświadczalnej 69. https://doi.org/10.5604/01.3001.0009.6575

Lemos J, Palmer S, Zeng L, Wen Z, Kajfasz J, Freires I, Brady L (2019) The biology of Streptococcus mutans. Microbiol Spectr 7(1). https://doi.org/10.1128/microbiolspec. gpp1123-0051-2018

Mai S, Mauger MT, Niu L-n, Barnes JB, Kao S, Bergeron BE, Tay FR (2017) Potential applications of antimicrobial peptides and their mimics in combating caries and pulpal infections. Acta Biomater 49:16–35. https://doi.org/10.1016/j.actbio.2016.11.026

Article  CAS  PubMed  Google Scholar 

Matsui R, Cvitkovitch D (2010) Acid tolerance mechanisms utilized by Streptococcus mutans. Future Microbiol 5(3):403–417. https://doi.org/10.2217/fmb.09.129

Article  CAS  PubMed  Google Scholar 

Matsumoto-Nakano M (2018) Role of Streptococcus mutans surface proteins for biofilm formation. Japanese Dent Sci Rev 54(1):22–29. https://doi.org/10.1016/j.jdsr.2017.08.002

Article  Google Scholar 

Mohsenipour M, Hassanshahian Z (2014) Investigating the effectiveness of Centaureacyanus extracts on planktonic growth and biofilm structures of six pathogenic bacteria. SSU_Journals 22(4):1358–1370

Google Scholar 

Neethu S, Midhun SJ, Radhakrishnan E, Jyothis M (2020) Surface functionalization of central venous catheter with mycofabricated silver nanoparticles and its antibiofilm activity on multidrug resistant Acinetobacter baumannii. Microb Pathog 138:103832. https://doi.org/10.1016/j.micpath.2019.103832

Article  CAS  PubMed  Google Scholar 

Niu JY, Yin IX, Wu WKK, Li Q-L, Mei ML, Chu CH (2021) Antimicrobial peptides for the prevention and treatment of dental caries: a concise review. Arch Oral Biol 122:105022. https://doi.org/10.1016/j.archoralbio.2020.105022

Article  CAS  PubMed  Google Scholar 

Nosrati M, Behbahani M (2015a) Antibacterial activity of methanol extracts from different parts of Prangos crossoptera and their synergistic effect on some antibiotics. J Mazandaran Univ Med Sci 25(129):92–101

Google Scholar 

Nosrati M, Behbahani M (2015b) Molecular docking study of HIV-1 protease with triterpenoides compounds from plants and mushroom. Arak Univ Med Sci J 18(3):67–79

Google Scholar 

Nosrati M, Behbahani M (2016) In vitro and in silico evaluation of antibacterial effect of methanolic extracts of Prangos ferulacea on single and biofilm structure of Streptococcus mutans. SSU_Journals 23(11):1049–1062

Google Scholar 

O’Toole G (2011) Microtiter dish biofilm formation assay. JoVE 47:2437. https://doi.org/10.3791/2437

Article  Google Scholar 

Priya A, Kumar CBM, Valliammai A, Selvaraj A, Pandian SK (2021) Usnic acid deteriorates acidogenicity, acidurance and glucose metabolism of Streptococcus mutans through downregulation of two-component signal transduction systems. Sci Rep 11(1):1374. https://doi.org/10.1038/s41598-020-80338-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saleem U, Saleem M, Ahmad B, Hussain K, Ahmad M, Bukhari N, Anjum A (2015) In-vitro antimicrobial susceptibility testing of leaves methanol extract and latex of euphorbia helioscopia using agar well diffusion and broth dilution methods. J Anim Plant Sci 25:261–267

CAS  Google Scholar 

Senneby A, Davies J, Svensäter G, Neilands J (2017) Acid tolerance properties of dental biofilms in vivo. BMC Microbiol 17:1–8. https://doi.org/10.1186/s12866-017-1074-7

Article  CAS  Google Scholar 

Seo M-D, Won H-S, Kim J-H, Mishig-Ochir T, Lee B-J (2012) Antimicrobial peptides for therapeutic applications: a review. Molecules 17(10):12276–12286. https://doi.org/10.3390/molecules171012276

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shrestha L, Fan H-M, Tao H-R, Huang J-D (2022) Recent strategies to combat biofilms using antimicrobial agents and therapeutic approaches. Pathogens 11(3):292. https://doi.org/10.3390/pathogens11030292

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shukla SK, Rao TS (2013) Effect of calcium on Staphylococcus aureus biofilm architecture: a confocal laser scanning microscopic study. Colloids Surf B 103:448–454. https://doi.org/10.1016/j.colsurfb.2012.11.003

Article  CAS  Google Scholar 

Syafriza D, Sutadi H, Primasari A, Siregar Y (2021) Anti-biofilm of various histatin 5 concentrations against streptococcus mutans from salivary isolate. Paper presented at the 1st Aceh International Dental Meeting (AIDEM 2019), Oral Health International Conference On Art, Nature and Material Science Development 2019. https://doi.org/10.2991/ahsr.k.210201.005

Wang Y, Hoffmann JP, Baker SM, Bentrup KHz, Wimley WC, Fuselier JA, Morici LA (2021) Inhibition of Streptococcus mutans biofilms with bacterial-derived outer membrane vesicles. BMC Microbiol 21(1):1–12. https://doi.org/10.1186/s12866-021-02296-x

Article  CAS  Google Scholar 

Zhang OL, Niu JY, Yu OY, Mei ML, Jakubovics NS, Chu CH (2023) Peptide designs for use in caries management: a systematic review. Int J Mol Sci 24(4):4247. https://doi.org/10.3390/ijms24044247

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif