Reliable detection of RNA in hippocampus sections of mice by FISH up to a post-mortem delay of 24 h

Barton AJ, Pearson RC, Najlerahim A, Harrison PJ (1993) Pre- and postmortem influences on brain RNA. J Neurochem 61:1–11

Article  CAS  PubMed  Google Scholar 

Dachet F, Brown JB, Valyi-Nagy T, Narayan KD, Serafini A, Boley N, Gingeras TR, Celniker SE, Mohapatra G, Loeb JA (2021) Selective time-dependent changes in activity and cell-specific gene expression in human postmortem brain. Sci Rep 11:6078

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Groot CJ, Theeuwes JW, Dijkstra CD, van der Valk P (1995) Postmortem delay effects on neuroglial cells and brain macrophages from Lewis rats with acute experimental allergic encephalomyelitis: an immunohistochemical and cytochemical study. J Neuroimmunol 59:123–134

Article  PubMed  Google Scholar 

Durrenberger PF, Fernando S, Kashefi SN, Ferrer I, Hauw J-J, Seilhean D, Smith C, Walker R, Al-Sarraj S, Troakes C, Palkovits M, Kasztner M, Huitinga I, Arzberger T, Dexter DT, Kretzschmar H, Reynolds R (2010) Effects of antemortem and postmortem variables on human brain mRNA quality: a BrainNet Europe study. J Neuropathol Exp Neurol 69:70–81

Article  PubMed  Google Scholar 

ElHajj Z, Cachot A, Müller T, Riederer IM, Riederer BM (2016) Effects of postmortem delays on protein composition and oxidation. Brain Res Bull 121:98–104

Article  CAS  PubMed  Google Scholar 

Ervin JF, Heinzen EL, Cronin KD, Goldstein D, Szymanski MH, Burke JR, Welsh-Bohmer KA, Hulette CM (2007) Postmortem delay has minimal effect on brain RNA integrity. J Neuropathol Exp Neurol 66:1093–1099

Article  CAS  PubMed  Google Scholar 

Ferrer I, Santpere G, Arzberger T, Bell J, Blanco R, Boluda S, Budka H, Carmona M, Giaccone G, Krebs B, Limido L, Parchi P, Puig B, Strammiello R, Ströbel T, Kretzschmar H (2007) Brain protein preservation largely depends on the postmortem storage temperature: implications for study of proteins in human neurologic diseases and management of brain banks: a BrainNet Europe Study. J Neuropathol Exp Neurol 66:35–46

Article  CAS  PubMed  Google Scholar 

Gelpi E, Preusser M, Bauer G, Budka H (2007) Autopsy at 2 months after death: brain is satisfactorily preserved for neuropathology. Forensic Sci Int 168:177–182

Article  PubMed  Google Scholar 

Glotfelty EJ, Tovar-y-Romo LB, Hsueh S-C, Tweedie D, Li Y, Harvey BK, Hoffer BJ, Karlsson TE, Olson L, Greig NH (2023) The RhoA-ROCK1/ROCK2 pathway exacerbates inflammatory signaling in immortalized and primary microglia. Cells. https://doi.org/10.3390/cells12101367. ([Epub ahead of print])

Article  PubMed  PubMed Central  Google Scholar 

Haque ME, Kim I-S, Jakaria M, Akther M, Choi D-K (2018) Importance of GPCR-mediated microglial activation in alzheimer’s disease. Front Cell Neurosci 12:258

Article  PubMed  PubMed Central  Google Scholar 

Heng Y, Dubbelaar ML, Marie SKN, Boddeke EWGM, Eggen BJL (2021) The effects of postmortem delay on mouse and human microglia gene expression. Glia 69:1053–1060

Article  CAS  PubMed  Google Scholar 

Hilbig H, Bidmon H-J, Oppermann OT, Remmerbach T (2004) Influence of post-mortem delay and storage temperature on the immunohistochemical detection of antigens in the CNS of mice. Exp Toxicol Pathol 56:159–171

Article  PubMed  Google Scholar 

Kobayashi H, Sakimura K, Kuwano R, Sato S, Ikuta F, Takahashi Y, Miyatake T, Tsuji S (1990) Stability of messenger RNA in postmortem human brains and construction of human brain cDNA libraries. J Mol Neurosci 2:29–34

Article  CAS  PubMed  Google Scholar 

Lamare M, Taylor RG, Farout L, Briand Y, Briand M (2002) Changes in proteasome activity during postmortem aging of bovine muscle. Meat Sci 61:199–204

Article  CAS  PubMed  Google Scholar 

Lier J, Streit WJ, Bechmann I (2021) Beyond activation: characterizing microglial functional phenotypes. Cells. https://doi.org/10.3390/cells10092236. ([Epub ahead of print])

Article  PubMed  PubMed Central  Google Scholar 

MacKenzie JM (2014) Examining the decomposed brain. Am J Forensic Med Pathol 35:265–270

Article  PubMed  Google Scholar 

Maeda J, Minamihisamatsu T, Shimojo M, Zhou X, Ono M, Matsuba Y, Ji B, Ishii H, Ogawa M, Akatsu H, Kaneda D, Hashizume Y, Robinson JL, Lee VM-Y, Saito T, Saido TC, Trojanowski JQ, Zhang M-R, Suhara T, Higuchi M, Sahara N (2021) Distinct microglial response against Alzheimer’s amyloid and tau pathologies characterized by P2Y12 receptor. Brain Commun 3:fcab011

Article  PubMed  PubMed Central  Google Scholar 

Olah M, Menon V, Habib N, Taga MF, Ma Y, Yung CJ, Cimpean M, Khairallah A, Coronas-Samano G, Sankowski R, Grün D, Kroshilina AA, Dionne D, Sarkis RA, Cosgrove GR, Helgager J, Golden JA, Pennell PB, Prinz M, Vonsattel JPG, Teich AF, Schneider JA, Bennett DA, Regev A, Elyaman W, Bradshaw EM, de Jager PL (2020) Single cell RNA sequencing of human microglia uncovers a subset associated with Alzheimer’s disease. Nat Commun 11:6129

Article  CAS  PubMed  PubMed Central  Google Scholar 

Orre M, Kamphuis W, Dooves S, Kooijman L, Chan ET, Kirk CJ, Dimayuga Smith V, Koot S, Mamber C, Jansen AH, Ovaa H, Hol EM (2013) Reactive glia show increased immunoproteasome activity in Alzheimer’s disease. Brain 136:1415–1431

Article  PubMed  Google Scholar 

Riemenschneider H, Simonetti F, Sheth U, Katona E, Roth S, Hutten S, Farny D, Michaelsen M, Nuscher B, Schmidt MK, Flatley A, Schepers A, Gruijs da Silva LA, Zhou Q, Klopstock T, Liesz A, Arzberger T, Herms J, Feederle R, Gendron TF, Dormann D, Edbauer D (2023) Targeting the glycine-rich domain of TDP-43 with antibodies prevents its aggregation in vitro and reduces neurofilament levels in vivo. Acta Neuropathol Commun. https://doi.org/10.1186/s40478-023-01592-z. ([Epub ahead of print])

Article  PubMed  PubMed Central  Google Scholar 

Scholefield M, Church SJ, Xu J, Robinson AC, Gardiner NJ, Roncaroli F, Hooper NM, Unwin RD, Cooper GJS (2020) Effects of alterations of post-mortem delay and other tissue-collection variables on metabolite levels in human and rat brain. Metabolites. https://doi.org/10.3390/metabo10110438. ([Epub ahead of print])

Article  PubMed  PubMed Central  Google Scholar 

Schöneberg T, Meister J, Knierim AB, Schulz A (2018) The G protein-coupled receptor GPR34 - The past 20 years of a grownup. Pharmacol Ther 189:71–88

Article  PubMed  Google Scholar 

Shaik SM, Cao Y, Gogola JV, Dodiya HB, Zhang X, Boutej H, Han W, Kriz J, Sisodia SS (2023) Translational profiling identifies sex-specific metabolic and epigenetic reprogramming of cortical microglia/macrophages in APPPS1–21 mice with an antibiotic-perturbed-microbiome. Mol Neurodegener. https://doi.org/10.1186/s13024-023-00668-7. ([Epub ahead of print])

Article  PubMed  PubMed Central  Google Scholar 

Stan AD, Ghose S, Gao X-M, Roberts RC, Lewis-Amezcua K, Hatanpaa KJ, Tamminga CA (2006) Human postmortem tissue: what quality markers matter? Brain Res 1123:1–11

Article  CAS  PubMed  PubMed Central  Google Scholar 

Streit WJ (2004) Microglia and Alzheimer’s disease pathogenesis. J Neurosci Res 77:1–8

Article  CAS  PubMed  Google Scholar 

van Lommel P, van Wees R, Meyers V, Elfferich I (2001) Near-death experience in survivors of cardiac arrest: a prospective study in the Netherlands. Lancet 358:2039–2045

Article  PubMed  Google Scholar 

Verwer RWH, Hermens WTJMC, Dijkhuizen P, ter Brake O, Baker RE, Salehi A, Sluiter AA, Kok MJM, Muller LJ, Verhaagen J, Swaab DF (2002a) Cells in human postmortem brain tissue slices remain alive for several weeks in culture. FASEB J 16:54–60

Article  CAS  PubMed  Google Scholar 

Verwer RWH, Hermens WTJMC, ter Brake O, Verhaagen J, Swaab DF (2002b) Life after death? Neurology 59:1355

Article  CAS  PubMed  Google Scholar 

Walker DG, Tang TM, Mendsaikhan A, Tooyama I, Serrano GE, Sue LI, Beach TG, Lue L-F (2020) Patterns of expression of purinergic receptor P2RY12, a putative marker for non-activated microglia, in aged and alzheimer’s disease brains. Int J Mol Sci. https://doi.org/10.3390/ijms21020678. ([Epub ahead of print])

Article  PubMed  PubMed Central  Google Scholar 

Winkelmann A (2016) Consent and consensus-ethical perspectives on obtaining bodies for anatomical dissection. Clin Anat 29:70–77

Article  PubMed  Google Scholar 

Yvanka de Soysa T, Therrien M, Walker AC, Stevens B (2022) Redefining microglia states: lessons and limits of human and mouse models to study microglia states in neurodegenerative diseases. Semin Immunol 60:101651

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif