Abg Abd Wahab, D.Y., Gau, C.H., Zakaria, R., Muthu Karuppan, M.K., A-Rahbi, B.S., Abdullah, Z., Alrafiah, A., Abdullah, J.M., and Muthuraju, S., Review on cross talk between neurotransmitters and neuroinflammation in striatum and cerebellum in the mediation of motor behaviour, Biomed. Res. Int., 2019, vol. 2019, p. 1767203. PMID: 31815123; PMCID: PMC6877979. https://doi.org/10.1155/2019/1767203
Article CAS PubMed PubMed Central Google Scholar
Agüero, P., Sainz, M.J., García-Ayllón, M.S., Sáez-Valero, J., Téllez, R., Guerrero-López, R., Pérez-Pérez, J., Jimenéz-Escrig, A., and Gómez-Tortosa, E., α‑Secretase nonsense mutation (ADAM10 Tyr167*) in familial Alzheimer’s disease, Alzheimers Res. Ther., 2020, vol. 12, no. 1, p. 139. PMID: 33129344; PMCID: PMC7603780. https://doi.org/10.1186/s13195-020-00708-0
Article CAS PubMed PubMed Central Google Scholar
Alghamdi, B.S., The neuroprotective role of melatonin in neurological disorders, J. Neurosci. Res., 2018, vol. 96, no. 7, pp. 1136–1149. PMID: 29498103; PMCID: PMC6001545. https://doi.org/10.1002/jnr.24220
Article CAS PubMed PubMed Central Google Scholar
Anderson, G., Depression pathophysiology: Astrocyte mitochondrial melatonergic pathway as crucial hub, Int. J. Mol. Sci., 2022, vol. 24, no. 1, p. 350. PMID: 36613794; PMCID: PMC9820523. https://doi.org/10.3390/ijms24010350
Article CAS PubMed PubMed Central Google Scholar
Andrews, P.W., Bosyj, C., Brenton, L., Green, L., Gasser, P.J., Lowry, C.A., and Pickel, V.M., All the brain’s a stage for serotonin: The forgotten story of serotonin diffusion across cell membranes, Proc. Biol. Sci., 2022, vol. 289, no. 1986, p. 20221565. PMID: 36321487; PMCID: PMC9627707. https://doi.org/10.1098/rspb.2022.1565
Chakraborty, S., Lennon, J.C., Malkaram, S.A., Zeng, Y., Fisher, D.W., and Dong, H., Serotonergic system, cognition, and BPSD in Alzheimer’s disease, Neurosci. Lett., 2019, vol. 704, pp. 36–44.https://doi.org/10.1016/j.neulet.2019.03.050
Chen, D., Zhang, T., and Lee, T.H., Cellular mechanisms of melatonin: Insight from neurodegenerative diseases, Biomolecules, 2020, vol. 10, no. 8, p. 1158. PMID: 32784556; PMCID: PMC7464852. https://doi.org/10.3390/biom10081158
Article PubMed PubMed Central Google Scholar
Correia, A.S. and Vale, N., Tryptophan metabolism in depression: A narrative review with a focus on serotonin and kynurenine pathways, Int. J. Mol. Sci., 2022, vol. 23, no. 15, p. 8493. PMID: 35955633; PMCID: PMC9369076. https://doi.org/10.3390/ijms23158493
Article CAS PubMed PubMed Central Google Scholar
Fakhoury, M., Microglia and astrocytes in Alzheimer’s disease: Implications for therapy, Curr. Neuropharmacol., 2018, vol. 16, no. 5, pp. 508–518. PMID: 28730967; PMCID: PMC5997862. https://doi.org/10.2174/1570159X15666170720095240
Article CAS PubMed PubMed Central Google Scholar
Fan, R., Peng, X., Xie, L., Dong, K., Ma, D., Xu, W., Shi, X., Zhang, S., Chen, J., Yu, X., and Yang, Y., Importance of Bmal1 in Alzheimer’s disease and associated aging-related diseases: Mechanisms and interventions, Aging Cell, 2022, vol. 21, no. 10, p. e13704. PMID: 36056774; PMCID: PMC9577946. https://doi.org/10.1111/acel.13704
Article CAS PubMed PubMed Central Google Scholar
Fanet, H., Capuron, L., Castanon, N., Calon, F., and Vancassel, S., Tetrahydrobioterin (BH4) pathway: From metabolism to neuropsychiatry, Curr. Neuropharmacol., 2021, vol. 19, no. 5, pp. 591–609. PMID: 32744952; PMCID: PMC8573752. https://doi.org/10.2174/1570159X18666200729103529
Gao, K., Mu, C.L., Farzi, A., and Zhu, W.Y., Tryptophan metabolism: A link between the gut microbiota and brain, Adv. Nutr., 2020, vol. 11, no. 3, pp. 709–723. PMID: 31825083; PMCID: PMC7231603. https://doi.org/10.1093/advances/nmz127
Grifka-Walk, H.M., Jenkins, B.R., and Kominsky, D.J., Amino acid Trp: The far out impacts of host and commensal tryptophan metabolism, Front. Immunol., 2021, vol. 12, p. 653208. PMID: 34149693; PMCID: PMC8213022. https://doi.org/10.3389/fimmu.2021.653208
Article CAS PubMed PubMed Central Google Scholar
Homolak, J., Mudrovčić, M., Vukić, B., Toljan, K., Circadian, rhythm and Alzheimer’s disease, Med. Sci. (Basel), 2018, vol. 6, no. 3, p. 52. PMID: 29933646; PMCID: PMC6164904. https://doi.org/10.3390/medsci6030052
Article CAS PubMed Google Scholar
Jayamohananan, H., Manoj Kumar, M.K., and Aneesh, T.P., 5-HIAA as a potential biological marker for neurological and psychiatric disorders, Adv. Pharm. Bull., 2019, vol. 9, no. 3, pp. 374–381. PMID: 31592064; PMCID: PMC6773935. https://doi.org/10.15171/apb.2019.044
Article CAS PubMed PubMed Central Google Scholar
Khan, S., Barve, K.H., and Kumar, M.S., Recent advancements in pathogenesis, diagnostics and treatment of Alzheimer’s disease, Curr. Neuropharmacol., 2020, vol. 18, no. 11, pp. 1106–1125. PMID: 32484110; PMCID: PMC7709159. https://doi.org/10.2174/1570159X18666200528142429
Lee, B.H., Hille, B., and Koh, D.S., Serotonin modulates melatonin synthesis as an autocrine neurotransmitter in the pineal gland, Proc. Natl. Acad. Sci. U.S.A., 2021, vol. 118, no. 43, p. e2113852118. PMID: 34675083; PMCID: PMC8639368. https://doi.org/10.1073/pnas.2113852118
Article CAS PubMed PubMed Central Google Scholar
Li, D., Yu, S., Long, Y., Shi, A., Deng, J., Ma, Y., Wen, J., Li, X., Liu, S., Zhang, Y., Wan, J., Li, N., and Ao, R., Tryptophan metabolism: Mechanism-oriented therapy for neurological and psychiatric disorders, Front. Immunol., 2022, vol. 13, p. 985378. PMID: 36159806; PMCID: PMC9496178. https://doi.org/10.3389/fimmu.2022.985378
Article CAS PubMed PubMed Central Google Scholar
Li, Y., Zhang, J., Wan, J., Liu, A., and Sun, J., Melatonin regulates Aβ production/clearance balance and Aβ neurotoxicity: A potential therapeutic molecule for Alzheimer’s disease, Biomed. Pharmacother., 2020, vol. 132, p. 110887. PMID: 33254429. https://doi.org/10.1016/j.biopha.2020.110887
Article CAS PubMed Google Scholar
Luo, F., Sandhu, A.F., Rungratanawanich, W., Williams, G.E., Akbar, M., Zhou, S., Song, B.J., and Wang, X., Melatonin and autophagy in aging-related neurodegenerative diseases, Int. J. Mol. Sci., 2020, vol. 21, no. 19, p. 7174. PMID: 32998479; PMCID: PMC7584015. https://doi.org/10.3390/ijms21197174
Article CAS PubMed PubMed Central Google Scholar
Ma, C., Hong, F., and Yang, S., Amyloidosis in Alzheimer’s disease: Pathogeny, etiology, and related therapeutic directions, Molecules, 2022, vol. 27, no. 4, p. 1210. PMID: 35209007; PMCID: PMC8876037. https://doi.org/10.3390/molecules27041210
Article CAS PubMed PubMed Central Google Scholar
Melhuish Beaupre, L.M., Brown, G.M., Gonçalves, V.F., and Kennedy, J.L., Melatonin’s neuroprotective role in mitochondria and its potential as a biomarker in aging, cognition and psychiatric disorders, Transl. Psychiatry, 2021, vol. 11, no. 1, p. 339. PMID: 34078880; PMCID: PMC8172874. https://doi.org/10.1038/s41398-021-01464-x
Article CAS PubMed PubMed Central Google Scholar
Modoux, M., Rolhion, N., Mani, S., and Sokol, H., Tryptophan metabolism as a pharmacological target, Trends Pharmacol. Sci., 2021, vol. 42, no. 1, pp. 60–73. PMID: 33256987. https://doi.org/10.1016/j.tips.2020.11.006
Article CAS PubMed Google Scholar
Nikolaev, G., Robeva, R., and Konakchieva, R., Membrane melatonin receptors activated cell signaling in physiology and disease, Int. J. Mol. Sci., 2021, vol. 23, no. 1, p. 471. PMID: 35008896; PMCID: PMC8745360.https://doi.org/10.3390/ijms23010471
Article CAS PubMed PubMed Central Google Scholar
Petrus, P., Cervantes, M., Samad, M., et al., Tryptophan metabolism is a physiological integrator regulating circadian rhythms, Mol. Metab., 2022, vol. 64, p. 101556. PMID: 35914650; PMCID: PMC9382333. https://doi.org/10.1016/j.molmet.2022.101556
Sabir, M.S., Haussler, M.R., Mallick, S., Kaneko, I., Lucas, D.A., Haussler, C.A., Whitfield, G.K., and Jurutka, P.W., Optimal vitamin D spurs serotonin: 1,25-dihydroxyvitamin D represses serotonin reuptake transport (SERT) and degradation (MAO-A) gene expression in cultured rat serotonergic neuronal cell lines, Genes Nutr., 2018, vol. 13, p. 19. PMID: 30008960; PMCID: PMC6042449. https://doi.org/10.1186/s12263-018-0605-7
Article CAS PubMed PubMed Central Google Scholar
Sacramento, P.M., Monteiro, C., Dias, A.S.O., Kasahara, T.M., Ferreira, T.B., Hygino, J., Wing, A.C., Andrade, R.M., Rueda, F., Sales, M.C., Vasconcelos, C.C., and Bento, C.A.M., Serotonin decreases the production of Th1/Th17 cytokines and elevates the frequency of regulatory CD4+ T-cell subsets in multiple sclerosis patients, Eur. J. Immunol., 2018, vol. 48, no. 8, pp. 1376–1388. PMID: 29719048. https://doi.org/10.1002/eji.201847525
Article CAS PubMed Google Scholar
Savonije, K. and Weaver, D.F., The role of tryptophan metabolism in Alzheimer’s disease, Brain Sci., 2023, vol. 13, no. 2, p. 292. PMID: 36831835; PMCID: PMC9954102. https://doi.org/10.3390/brainsci13020292
Article CAS PubMed PubMed Central Google Scholar
Scotton, W.J., Hill, L.J., Williams, A.C., and Barnes, N.M., Serotonin syndrome: Pathophysiology, clinical features, management, and potential future directions, Int. J. Tryptophan Res., 2019, vol. 12, p. 1178646919873925. PMID: 31523132; PMCID: PMC6734608. https://doi.org/10.1177/1178646919873925
Article PubMed PubMed Central Google Scholar
Singh, A., Ansari, V.A., Mahmood, T., Ahsan, F., and Wasim, R., Neurodegeneration: Microglia: Nf-Kappab signaling pathways, Drug Res., 2022, vol. 72, no. 9, pp. 496–499. PMID: 36055286. https://doi.org/10.1055/a-1915-4861
Song, J., Pineal gland dysfunction in Alzheimer’s disease: Relationship with the immune–pineal axis, sleep disturbance, and neurogenesis, Mol. Neurodegener., 2019, vol. 14, no. 1, p. 28. PMID: 31296240; PMCID: PMC6624939. https://doi.org/10.1186/s13024-019-0330-8
Article CAS PubMed PubMed Central Google Scholar
Wan, M., Ding, L., Wang, D., Han, J., and Gao, P., Serotonin: A potent immune cell modulator in autoimmune diseases, Front. Immunol., 2020, vol. 11, p. 186. PMID: 32117308; PMCID: PMC7026253. https://doi.org/10.3389/fimmu.2020.00186
Article CAS PubMed PubMed Central Google Scholar
Winn, S.R., Scherer, T., Thöny, B., Ying, M., Martinez, A., Weber, S., Raber, J., and Harding, C.O., Blood phenylalanine reduction corrects CNS dopamine and serotonin deficiencies and partially improves behavioral performance in adult phenylketonuric mice, Mol. Genet. Metab., 2018, vol. 123, no. 1, p. 6–20. PMID: 29331172; PMCID: PMC5786171. https://doi.org/10.1016/j.ymgme.2017.10.009
Comments (0)