Nanomaterials as catalysts for the sensitive and selective determination of diclofenac

P. A. Pushpanjali, J. G. Manjunatha, M. T. Srinivas. Highly sensitive platform utilizing poly(L-methionine) layered carbon nanotube paste sensor for the determination of voltaren. FlatChem 24 (2020) 100207. https://doi.org/10.1016/j.flatc.2020.100207

N. Vieno, M. Sillanpää. Fate of diclofenac in municipal wastewater treatment plant — A review. Environment International 69 (2014) 28-39. https://doi.org/10.1016/j.envint.2014.03.021

C. Russo, R. Nugnes, E. Orlo, A. di Matteo, B. De Felice, C. Montanino, M. Lavorgna, M. Isidori. Diclofenac eco-geno-toxicity in freshwater algae, rotifers and crustaceans. Environmental Pollution 335 (2023) 122251. https://doi.org/10.1016/j.envpol.2023.122251

Y. Zou, S. Griveau, A. Ringuedé, F. Bedioui, C. Richard, C. Slim. Functionalized Multiwalled Carbon Nanotube–Based Aptasensors for Diclofenac Detection. Frontiers in Chemistry 9 (2022) 812909. http://dx.doi.org/10.3389/fchem.2021.812909

L. Lonappan, S. K. Brar, R. K. Das, M. Verma, R. Y. Surampalli. Diclofenac and its transformation products: Environmental occurrence and toxicity - A review. Environment International 96 (2016) 127-138. https://doi.org/10.1016/j.envint.2016.09.014

A. A. Matin, M. A. Farajzadeh, A. Jouyban. A simple spectrophotometric method for determination of sodium diclofenac in pharmaceutical formulations. Il Farmaco 60 (2005) 855-858. https://doi.org/10.1016/j.farmac.2005.05.011

B. T. Alquadeib. Development and validation of a new HPLC analytical method for the determination of diclofenac in tablets. Saudi Pharmaceutical Journal 27(1) (2019) 66-70. https://doi.org/10.1016/j.jsps.2018.07.020

I. Shah, J. Barker, D. P. Naughton, S. J. Barton, S. S. Ashraf. Determination of diclofenac concentrations in human plasma using a sensitive gas chromatography mass spectrometry method. Chemistry Central Journal 10 (2016) 52. https://doi.org/10.1186/s13065-016-0199-3

B. Uslu, S. A. Ozkan. Electroanalytical Methods for the Determination of Pharmaceuticals: A Review of Recent Trends and Developments. Analytical Letters 44 (2011) 2644-2702. https://doi.org/10.1080/00032719.2011.553010

H. Karimi-Maleh, F. Karimi, M. Alizadeh, A. L. Sanati. Electrochemical Sensors, a Bright Future in the Fabrication of Portable Kits in Analytical Systems. The Chemical Record 20 (2020) 682. https://doi.org/10.1002/tcr.201900092

T. Dodevska, D. Hadzhiev, I. Shterev. Recent advances in electrochemical determination of anticancer drug 5-fluorouracil. ADMET and DMPK 11(2) (2023) 135. https://doi.org/10.5599/admet.1711

G. Y. Aguilar-Lira, G. A. Álvarez-Romero, A. Zamora-Suárez, M. Palomar-Pardavé, A. Rojas-Hernández, J. A. Rodríguez-Ávila, M. E. Páez-Hernández. New insights on diclofenac electrochemistry using graphite as working electrode. Journal of Electroanalytical Chemistry 794 (2017) 182-188. http://dx.doi.org/10.1016/j.jelechem.2017.03.050

S. Michalkiewicz, A. Skorupa, M. Jakubczyk. Carbon Materials in Electroanalysis of Preservatives: A Review. Materials 14 (2021) 7630. https://doi.org/10.3390/ma14247630

C. Slim, N. Tlili, C. Richard, S. Griveau, F. Bedioui. Amperometric detection of diclofenac at a nano-structured multi-wall carbon nanotubes sensing films. Inorganic Chemistry Communications 107 (2019) 107454. https://doi.org/10.1016/j.inoche.2019.107454

A. Afkhami, A. Bahiraei, T. Madrakian. Gold nanoparticle/multiwalled carbon nanotube modified glassy carbon electrode as a sensitive voltammetric sensor for the determination of diclofenac sodium. Materials Science and Engineering C 59 (2016) 168-176. http://dx.doi.org/10.1016/j.msec.2015.09.097

H. Yu, J. Jiao, Q. Li, Y. Li. Electrochemical Determination of Diclofenac Sodium in Pharmaceutical Sample Using Copper Nanoparticles/Reduced Graphene Oxide Modified Glassy Carbon Electrode. International Journal of Electrochemical Science 16 (2021) 211024. https://doi.org/10.20964/2021.10.19

N. C. Honakeri, S. J. Malode, R.M. Kulkarni, N. P. Shetti. Electrochemical behavior of diclofenac sodium at coreshell nanostructure modified electrode and its analysis in human urine and pharmaceutical samples. Sensors International 1 (2020) 100002. https://doi.org/10.1016/j.sintl.2020.100002

Md. Shalauddin, S. Akhter, W. J. Basirun, S. Bagheri, N. S. Anuar, Mohd. R. Johan. Hybrid nanocellulose/f-MWCNTs nanocomposite for the electrochemical sensing of diclofenac sodium in pharmaceutical drugs and biological fluids. Electrochimica Acta 304 (2019) 323-333. https://doi.org/10.1016/j.electacta.2019.03.003

D. T. N. Hoa, N. T. T. Tu, L. V. T. Son, L. V. T. Son, T. T. T. Toan, P. L. M. Thong, D. N. Nhiem, P. K. Lieu, D. Q. Khieu. Electrochemical Determination of Diclofenac by Using ZIF-67/g-C3N4 Modified Electrode. Hindawi Adsorption Science & Technology (2021) 7896286. https://doi.org/10.1155/2021/7896286

M. Malekzadeh, A. Mohadesi, M. A. Karimi, M. Ranjbar. Development of A New Electrochemical Sensor based on Zr-MOF/MIP for Sensitive Diclofenac Determination. Analytical and Bioanalytical Electrochemistry 12(3) (2020) 402-414. https://www.abechem.com/article_38858.html

S. J. Rowley-Neale, E. P. Randviir, A. S. Abo Dena, C. E. Banks. An overview of recent applications of reduced graphene oxide as a basis of electroanalytical sensing platforms. Applied Materials Today 10 (2018) 218-226. https://doi.org/10.1016/j.apmt.2017.11.010

J. Qian, F. Sun, L. Qin. Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. Materials Letters 82 (2012) 220-223. https://doi.org/10.1016/j.matlet.2012.05.077

A. K. S. Kumar, Y. Zhang, D. Li, R. G. Compton. A mini-review: How reliable is the drop casting technique? Electrochemistry Communications 121 (2020) 106867. https://doi.org/10.1016/j.elecom.2020.106867

M. A. Beluomini, J. L. da Silva, A. C. de Sá, E. Buffon, T. C. Pereira, N. R. Stradiotto. Electrochemical sensors based on molecularly imprinted polymer on nanostructured carbon materials: a review. Journal of Electroanalytical Chemistry 840 (2019) 343-366. https://doi.org/10.1016/j.jelechem.2019.04.005

T. Kokab, A. Shah, M. A. Khan, M. Arshad, J. Nisar, M. N. Ashiq, M. A. Zia. Simultaneous Femtomolar Detection of Paracetamol, Diclofenac, and Orphenadrine Using a Carbon Nanotube/Zinc Oxide Nanoparticle-Based Electrochemical Sensor. ACS Applied Nano Materials 4 (2021) 4699-4712. https://doi.org/10.1021/acsanm.1c00310

B. Baniahmad, H. H. Nadiki, S. Jahani, N. Nezamabadi-Pour, A. Toolabi, M. M. Foroughi. Simultaneous Electrochemical Determination of Chlorzoxazone and Diclofenac on an Efficient Modified Glassy Carbon Electrode by Lanthanum Oxide@ Copper(I) Sulfide Composite. Frontiers in Chemistry 10 (2022) 889590. https://www.frontiersin.org/articles/10.3389/fchem.2022.889590

A. Mokhtari, H. Karimi-Maleh, A.A. Ensafi, H. Beitollahi. Application of modified multiwall carbon nanotubes paste electrode for simultaneous voltammetric determination of morphine and diclofenac in biological and pharmaceutical samples. Sensors and Actuators B: Chemical 169 (2012) 96-105. https://doi.org/10.1016/j.snb.2012.03.059

H. Karimi-Maleh, F. Karimi, M. Rezapour, M. Bijad, M. Farsi, A. Beheshti, S.-A. Shahidi. Carbon Paste Modified Electrode as Powerful Sensor Approach Determination of Food Contaminants, Drug Ingredients, and Environmental Pollutants: A Review. Current Analytical Chemistry 15(4) (2019) 410-422. https://doi.org/10.2174/1573411014666181026100037

A. A. Ensafi, M. Izadi, H. Karimi-Maleh. Sensitive voltammetric determination of diclofenac using room-temperature ionic liquid-modified carbon nanotubes paste electrode. Ionics 19 (2013) 137-144. https://doi.org/10.1007/s11581-012-0705-0

R. A. Farghali, R. A. Ahmed, A. A. Alharthi. Synthesis and Characterization of Electrochemical Sensor Based on Polymeric /TiO2 Nanocomposite Modified with Imidizolium Ionic Liquid for Determination of Diclofenac. International Journal of Electrochemical Science 13(11) (2018) 10390-10414. https://doi.org/10.20964/2018.11.16

S. Motoc, F. Manea, A. Baciu, C. Orha, A. Pop. Electrochemical Method for Ease Determination of Sodium Diclofenac Trace Levels in Water Using Graphene—Multiwalled Carbon Nanotubes Paste Electrode. International Journal of Environmental Research and Public Health 19(1) (2022) 29. https://doi.org/10.3390/ijerph19010029

Y. Akbarian, M. Shabani-Nooshabadi, H. Karimi-Maleh. Fabrication of a new electrocatalytic sensor for determination of diclofenac, morphine and mefenamic acid using synergic effect of NiO-SWCNT and 2, 4-dimethyl-N/-[1- (2, 3-dihydroxy phenyl) methylidene] aniline. Sensors and Actuators B: Chemical 273 (2018) 228-233. https://doi.org/10.1016/j.snb.2018.06.049

T. Dodevska, D. Hadzhiev, I. Shterev. A Review on Electrochemical Microsensors for Ascorbic Acid Detection: Clinical, Pharmaceutical, and Food Safety Applications. Micromachines 14 (2023) 41. https://doi.org/10.3390/mi14010041

T. Dodevska, D. Hadzhiev, I. Shterev. Electrochemical sensors for the safety and quality control of cosmetics: An overview of achievements and challenges. Journal of Electrochemical Science and Engineering (2022). https://doi.org/10.5599/jese.1507

A. Sasal, K. Tyszczuk-Rotko, M. Wójciak, I. Sowa. First Electrochemical Sensor (Screen-Printed Carbon Electrode Modified with Carboxyl Functionalized Multiwalled Carbon Nanotubes) for Ultratrace Determination of Diclofenac. Materials 13 (2020) 781. https://doi.org/10.3390/ma13030781

K. Kimuam, N. Rodthongkum, N. Ngamrojanavanich, O. Chailapakul, N. Ruecha. Single step preparation of platinum nanoflowers/reduced graphene oxide electrode as a novel platform for diclofenac sensor. Microchemical Journal 155 (2020) 104744. https://doi.org/10.1016/j.microc.2020.104744

I. Seguro, J. G. Pacheco, C. Delerue-Matos. Low Cost, Easy to Prepare and Disposable Electrochemical Molecularly Imprinted Sensor for Diclofenac Detection. Sensors 21(6) (2021) 1975. https://doi.org/10.3390/s21061975

M. R. Baezzat, N. Tavakkoli, H. Zamani. Construction of a New Electrochemical Sensor Based on MoS2 Nanosheets Modified Graphite Screen Printed Electrode for Simultaneous Determination of Diclofenac and Morphine. Analytical and Bioanalytical Chemistry Research 9(2) (2022) 153-162. https://doi.org/10.22036/abcr.2021.289384.1645

S. Berto, E. Cagno, E. Prenesti, G. Aragona, S. Bertinetti, A. Giacomino, P. Inaudi, M. Malandrino, E. Terranova, O. Abollino. Voltammetric Study for the Determination of Diclofenac in Aqueous Solutions Using Electro-Activated Carbon Electrodes. Applied Sciences 12 (2022) 7983. https://doi.org/10.3390/app12167983

E. Costa-Rama, H.P.A. Nouws, C. Delerue-Matos, M.C. Blanco-Lopez, M.T. Fernandez-Abedul. Preconcentration and sensitive determination of the anti-inflammatory drug diclofenac on a paper-based electroanalytical platform. Analytica Chimica Acta 1074 (2019) 89-97. https://doi.org/10.1016/j.aca.2019.05.016

M. M. Eteya, G. H. Rounaghi, B. Deiminiat. Fabrication of a new electrochemical sensor based on AuPt bimetallic nanoparticles decorated multiwalled carbon nanotubes for determination of diclofenac. Microchemical Journal 144 (2019) 254-260. https://doi.org/10.1016/j.microc.2018.09.009

留言 (0)

沒有登入
gif