Rapid tumor progression complicated with liver abscess in a patient with gastric cancer receiving nivolumab therapy

Sung H, Ferlay J, Siegel RL et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249. https://doi.org/10.3322/caac.21660

Article  PubMed  Google Scholar 

Koizumi W, Narahara H, Hara T et al (2008) S-1 plus cisplatin versus S-1 alone for first-line treatment of advanced gastric cancer (SPIRITS trial): a phase III trial. Lancet Oncol 9(3):215–221. https://doi.org/10.1016/S1470-2045(08)70035-4

Article  CAS  PubMed  Google Scholar 

Janowitz T, Thuss-Patience P, Marshall A et al (2016) Chemotherapy vs supportive care alone for relapsed gastric, gastroesophageal junction, and oesophageal adenocarcinoma: a meta-analysis of patient-level data. Br J Cancer 114(4):381–387. https://doi.org/10.1038/bjc.2015.452

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kang YK, Boku N, Satoh T et al (2017) Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 390(10111):2461–2471. https://doi.org/10.1016/S0140-6736(17)31827-5

Article  CAS  PubMed  Google Scholar 

Janjigian YY, Shitara K, Moehler M et al (2021) First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): a randomised, open-label, phase 3 trial. Lancet 398(10294):27–40. https://doi.org/10.1016/S0140-6736(21)00797-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kang YK, Chen LT, Ryu MH et al (2022) Nivolumab plus chemotherapy versus placebo plus chemotherapy in patients with HER2-negative, untreated, unresectable advanced or recurrent gastric or gastro-oesophageal junction cancer (ATTRACTION-4): a randomised, multicentre, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 23(2):234–247. https://doi.org/10.1016/S1470-2045(21)00692-6

Article  CAS  PubMed  Google Scholar 

Champiat S, Dercle L, Ammari S et al (2017) Hyperprogressive disease is a new pattern of progression in cancer patients treated by anti-PD-1/PD-L1. Clin Cancer Res 23(8):1920–1928. https://doi.org/10.1158/1078-0432.CCR-16-1741

Article  CAS  PubMed  Google Scholar 

Saâda-Bouzid E, Defaucheux C, Karabajakian A et al (2017) Hyperprogression during anti-PD-1/PD-L1 therapy in patients with recurrent and/or metastatic head and neck squamous cell carcinoma. Ann Oncol 28(7):1605–1611. https://doi.org/10.1093/annonc/mdx178

Article  PubMed  Google Scholar 

Kato S, Goodman A, Walavalkar V et al (2017) Hyperprogressors after immunotherapy: analysis of genomic alterations associated with accelerated growth rate. Clin Cancer Res 23(15):4242–4250. https://doi.org/10.1158/1078-0432.CCR-16-3133

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kurman JS, Murgu SD (2018) Hyperprogressive disease in patients with non-small cell lung cancer on immunotherapy. J Thorac Dis 10(2):1124–1128. https://doi.org/10.21037/jtd.2018.01.79

Article  PubMed  PubMed Central  Google Scholar 

Wang X, Wang F, Zhong M et al (2020) The biomarkers of hyperprogressive disease in PD-1/PD-L1 blockage therapy. Mol Cancer 19(1):81. https://doi.org/10.1186/s12943-020-01200-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sasaki A, Nakamura Y, Mishima S et al (2019) Predictive factors for hyperprogressive disease during nivolumab as anti-PD1 treatment in patients with advanced gastric cancer. Gastric Cancer 22(4):793–802. https://doi.org/10.1007/s10120-018-00922-8

Article  CAS  PubMed  Google Scholar 

Aoki M, Shoji H, Nagashima K et al (2019) Hyperprogressive disease during nivolumab or irinotecan treatment in patients with advanced gastric cancer. ESMO Open 4(3):e000488. https://doi.org/10.1136/esmoopen-2019-000488

Article  PubMed  PubMed Central  Google Scholar 

Zhao Z, Bian J, Zhang J et al (2022) Hyperprogressive disease in patients suffering from solid malignancies treated by immune checkpoint inhibitors: a systematic review and meta-analysis. Front Oncol 12:843707. https://doi.org/10.3389/fonc.2022.843707

Article  PubMed  PubMed Central  Google Scholar 

Kumagai S, Koyama S, Itahashi K et al (2022) Lactic acid promotes PD-1 expression in regulatory T cells in highly glycolytic tumor microenvironments. Cancer Cell 40(2):201-218.e9. https://doi.org/10.1016/j.ccell.2022.01.001

Article  CAS  PubMed  Google Scholar 

Terme M, Pernot S, Marcheteau E et al (2013) VEGFA-VEGFR pathway blockade inhibits tumor-induced regulatory T cell proliferation in colorectal cancer. Cancer Res 73(2):539–549. https://doi.org/10.1158/0008-5472.CAN-12-2325

Article  CAS  PubMed  Google Scholar 

Petrelli F, Morelli AM, Luciani A et al (2021) Risk of infection with immune checkpoint inhibitors: a systematic review and meta-analysis. Target Oncol 16(5):553–568. https://doi.org/10.1007/s11523-021-00824-3

Article  PubMed  PubMed Central  Google Scholar 

Pinato DJ, Howlett S, Ottaviani D et al (2019) Association of prior antibiotic treatment with survival and response to immune checkpoint inhibitor therapy in patients with cancer. JAMA Oncol 5(12):1774–1778. https://doi.org/10.1001/jamaoncol.2019.2785

Article  PubMed  PubMed Central  Google Scholar 

Gui QF, Lu HF, Zhang CX et al (2015) Well-balanced commensal microbiota contributes to anti-cancer response in a lung cancer mouse model. Genet Mol Res 14(2):5642–5651. https://doi.org/10.4238/2015.May.25.16

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif