Hung WW, Egol KA, Zuckerman JD, Siu AL. Hip fracture management: tailoring care for the older patient. JAMA. 2012;307(20):2185–94.
Article CAS PubMed Google Scholar
Kanis JA, Oden A, McCloskey EV, Johansson H, Wahl DA, Cooper C. A systematic review of hip fracture incidence and probability of fracture worldwide. Osteoporos Int. 2012;23(9):2239–56.
Article CAS PubMed PubMed Central Google Scholar
Mathur HH, Rathva BM. Clinico-radiological and functional outcome of intertrochanteric femur fractures treated by proximal femoral nail antirotation Asia 2 (PFNA2) in Indian patients. Int J Orthop. 2020;6(2):864–6.
Zhang W, Antony Xavier RP, Decruz J, Chen YD, Park DH. Risk factors for mechanical failure of intertrochanteric fractures after fixation with proximal femoral nail antirotation (PFNA II): a study in a Southeast Asian population. Arch Orthop Trauma Surg. 2021;141(4):569–75.
Liu W, Zhou D, Liu F, Weaver MJ, Vrahas MS. Mechanical complications of intertrochanteric hip fractures treated with trochanteric femoral nails. J Trauma Acute Care Surg. 2013;75(2):304–10.
Tarrant SM, Graan D, Tarrant DJ, Kim RG, Balogh ZJ. Medial calcar comminution and intramedullary nail failure in unstable geriatric trochanteric hip fractures. Medicina. 2021;57(4):338.
Article PubMed PubMed Central Google Scholar
Knobe M, Münker R, Sellei R, Schmidt-Rohlfing B, Erli H, Strobl C, et al. Unstable pertrochanteric femur fractures. Failure rate, lag screw sliding and outcome with extra-and intramedullary devices (PCCP, DHS and PFN). Zeitschrift Fur Orthopadie Und Unfallchirurgie. 2009;147(3):306–13.
Article CAS PubMed Google Scholar
Zhang R, Luo P, Hu W, Ke C, Wang J, Guo X. Biomechanical assessment of newly-designed proximal femoral medial buttress plate for treatment of reverse oblique femoral intertrochanteric fracture. Chin J Rep Reconstr Surg. 2017;31(2):165–70.
Nie B, Chen X, Li J, Wu D, Liu Q. The medial femoral wall can play a more important role in unstable intertrochanteric fractures compared with lateral femoral wall: a biomechanical study. J Orthop Surg Res. 2017;12(1):1–9.
Ceynowa M, Zerdzicki K, Klosowski P, Pankowski R, Rocławski M, Mazurek T. Cerclage cable augmentation does not increase stability of the fixation of intertrochanteric fractures. A biomechanical study. Orthop Traumatol: Surg Res. 2021;107(6):103003.
Fensky F, Nüchtern JV, Kolb JP, Huber S, Rupprecht M, Jauch SY, et al. Cement augmentation of the proximal femoral nail antirotation for the treatment of osteoporotic pertrochanteric fractures—a biomechanical cadaver study. Injury. 2013;44(6):802–7.
Article CAS PubMed Google Scholar
Stramazzo L, Ratano S, Monachino F, Pavan D, Rovere G, Camarda L. Cement augmentation for trochanteric fracture in elderly: a systematic review. J Clin Orthop Trauma. 2021;15:65–70.
Blankstein M, Widmer D, Götzen M, Hofmann-Fliri L, Richards RG, Gueorguiev B, et al. Assessment of intraosseous femoral head pressures during cement augmentation of the perforated proximal femur nail antirotation blade. J Orthop Trauma. 2014;28(7):398–402.
Lu Y, Uppal HS. Hip fractures: relevant anatomy, classification, and biomechanics of fracture and fixation. Geriatr Orthop Surg Rehabil. 2019;10:2151459319859139.
Article PubMed PubMed Central Google Scholar
Ye K-F, Xing Y, Sun C, Cui Z-Y, Zhou F, Ji H-Q, et al. Loss of the posteromedial support: a risk factor for implant failure after fixation of AO 31–A2 intertrochanteric fractures. Chin Med J. 2020;133(01):41–8.
Article PubMed PubMed Central Google Scholar
Ozkan K, Türkmen İ, Sahin A, Yildiz Y, Erturk S, Soylemez MS. A biomechanical comparison of proximal femoral nails and locking proximal anatomic femoral plates in femoral fracture fixation: a study on synthetic bones. Indian J Orthop. 2015;49:347–51.
Article PubMed PubMed Central Google Scholar
Ceynowa M, Zerdzicki K, Klosowski P, Pankowski R, Rocławski M, Mazurek T. The early failure of the gamma nail and the dynamic hip screw in femurs with a wide medullary canal. A biomechanical study of intertrochanteric fractures. Clin Biomech. 2020;71:201–7.
Cleveland M, Bosworth DM, Thompson FR, Wilson HJ, Ishizuka T. A ten-year analysis of intertrochanteric fractures of the femur. JBJS. 1959;41(8):1399–408.
Baumgaertner MR, Solberg BD. Awareness of tip-apex distance reduces failure of fixation of trochanteric fractures of the hip. J Bone Joint Surg British Vol. 1997;79(6):969–71.
Götze B, Bonnaire E, Weise K, Friedl H. Loadability of osteosynthesis of unstable per-and subtrochanteric fractures: an experimental study testing the proximal femoral nail (PFN), the gamma-nail, the DHS/trochanteric stabilization plate, the 95 -angled blade plate and the UFN/spiral blade. Aktuelle Traumatol. 1998;28:197–204.
Knobe M, Gradl G, Maier K-J, Drescher W, Jansen-Troy A, Prescher A, et al. Rotationally stable screw-anchor versus sliding hip screw plate systems in stable trochanteric femur fractures: a biomechanical evaluation. J Orthop Trauma. 2013;27(6):e127–36.
Weiser L, Ruppel AA, Nüchtern JV, Sellenschloh K, Zeichen J, Püschel K, et al. Extra-vs. intramedullary treatment of pertrochanteric fractures: a biomechanical in vitro study comparing dynamic hip screw and intramedullary nail. Arch Orthop Trauma Surg. 2015;135(8):1101–6.
Windolf M, Braunstein V, Dutoit C, Schwieger K. Is a helical shaped implant a superior alternative to the dynamic hip screw for unstable femoral neck fractures? A Biomech Investig Clin Biomech. 2009;24(1):59–64.
Bong MR, Patel V, Iesaka K, Egol KA, Kummer FJ, Koval KJ. Comparison of a sliding hip screw with a trochanteric lateral support plate to an intramedullary hip screw for fixation of unstable intertrochanteric hip fractures: a cadaver study. J Trauma Acute Care Surg. 2004;56(4):791–4.
Rupprecht M, Grossterlinden L, Sellenschloh K, Hoffmann M, Püschel K, Morlock M, et al. Internal fixation of femoral neck fractures with posterior comminution: a biomechanical comparison of DHS® and Intertan nail®. Int Orthop. 2011;35:1695–701.
Article PubMed PubMed Central Google Scholar
Kwak DK, Kim WH, Lee SJ, Rhyu SH, Jang CY, Yoo JH. Biomechanical comparison of three different intramedullary nails for fixation of unstable basicervical intertrochanteric fractures of the proximal femur: experimental studies. BioMed Res Int. 2018; 2018:7618079.
Wang H, Yang W, Ding K, Zhu Y, Zhang Y, Ren C, et al. Biomechanical study on the stability and strain conduction of intertrochanteric fracture fixed with proximal femoral nail antirotation versus triangular supporting intramedullary nail. Int Orthop. 2022;46(2):341–50.
Aminian A, Gao F, Fedoriw WW, Zhang L-Q, Kalainov DM, Merk BR. Vertically oriented femoral neck fractures: mechanical analysis of four fixation techniques. J Orthop Trauma. 2007;21(8):544–8.
Kim SS, Kim HJ, Lee CS. Clinical outcomes of PFNA-II in the Asian intertrochanteric fracture patients: comparison of clinical results according to proximal nail protrusion. Injury. 2020;51(2):361–6.
Kukla C, Pichl W, Prokesch R, Jacyniak W, Heinze G, Gatterer R, et al. Femoral neck fracture after removal of the standard gamma interlocking nail: a cadaveric study to determine factors influencing the biomechanical properties of the proximal femur. J Biomech. 2001;34(12):1519–26.
Article CAS PubMed Google Scholar
Kaiser W, Burmester J, Hausmann H, Gulielmos V, Htzel M, Merker H. Vergleichende Stabilittsprfungen von DHS-und-Nagel-Osteosynthesen bei instabilen pertrochantren Femurosteotomien. Langenbeck’s Arch Surg. 1997;2(382):100–6.
Marmor M, Elliott IS, Marshall ST, Yacoubian SV, Yacoubian SV, Herfat ST. Biomechanical comparison of long, short, and extended-short nail construct for femoral intertrochanteric fractures. Injury. 2015;46(6):963–9.
Rog D, Grigsby P, Hill Z, Pinette W, Inceoglu S, Zuckerman L. A biomechanical comparison of the two-and four-hole side-plate dynamic hip screw in an osteoporotic composite femur model. J Orthop Surg. 2017;25(2):2309499017717199.
Yu X, Wang H, Duan X, Liu M, Xiang Z. Intramedullary versus extramedullary internal fixation for unstable intertrochanteric fracture, a meta-analysis. Acta Orthop Traumatol Turc. 2018;52(4):299–307.
Article PubMed PubMed Central Google Scholar
Chang S-M, Hou Z-Y, Hu S-J, Du S-C. Intertrochanteric femur fracture treatment in Asia: what we know and what the world can learn. Orthop Clin. 2020;51(2):189–205.
Luo W, Fu X, Jx Ma, Huang Jm WuJ, Xl Ma. Biomechanical comparison of INTERTAN nail and Gamma3 nail for intertrochanteric fractures. Orthop Surg. 2020;12(6):1990–7.
Article PubMed PubMed Central Google Scholar
Hoffmann S, Paetzold R, Stephan D, Püschel K, Buehren V, Augat P. Biomechanical evaluation of interlocking lag screw design in intramedullary nailing of unstable pertrochanteric fractures. J Orthop Trauma. 2013;27(9):483–90.
Panagopoulos A, Argyropoulou E, Kokkalis ZT, Parchas N, Tserpes K. Study protocol: biomechanical testing, finite element analysis and prospective, randomized, clinical study of single screw cephalomedullary nailing versus integrated dual interlocking screw fixation for unstable (31A21–3) intertrochanteric fractures in patients> 70 years old. J Orthop Surg Res. 2023;18(1):1–13.
Zheng L, Chen X, Zheng Y, He X, Wu J, Lin Z. Cement augmentation of the proximal femoral nail antirotation for the treatment of two intertrochanteric fractures-a comparative finite element study. BMC Musculoskelet Disord. 2021;22:1–13.
Wang T, Guo J, Long Y, Hou Z. Incidence and risk factors of mortality in nonagenarians and centenarians after intertrochanteric fracture: 2-year follow-up. Clin Interv Aging. 2022;17:369.
Article PubMed PubMed Central Google Scholar
Nie S, Li M, Li J, Zhao Y, Cui X, Xu G, et al. Risk factors for anterior cortical impingement of short cephalomedullary nail in Chinese elderly patients with intertrochanteric fracture. Ther Clin Risk Manag. 2020;16:523.
Comments (0)