Acute and chronic effects of exercise intensity on cognitive functions of fastball athletes

Alves CR, Tessaro VH, Teixeira LA, Murakava K, Roschel H, Gualano B, Takito MY (2014) Influence of acute high-intensity aerobic interval exercise bout on selective attention and short-term memory tasks. Percept Mot Skills 118(1):63–72

Article  PubMed  Google Scholar 

Bae S, Masaki H (2019) Effects of acute aerobic exercise on cognitive flexibility required during task-switching paradigm. Front Hum Neurosci 13:260. https://doi.org/10.3389/fnhum.2019.00260

Article  PubMed  PubMed Central  Google Scholar 

Baker LD, Frank LL, Foster-Schubert K, Green PS, Wilkinson CW, McTiernan A, Plymate SR, Fishel MA, Watson GS, Cholerton BA, Duncan GE (2010) Effects of aerobic exercise on mild cognitive impairment: a controlled trial. Arch Neurol 67(1):71–79

Article  PubMed  PubMed Central  Google Scholar 

Basso JC, Suzuki WA (2017) The effects of acute exercise on mood, cognition, neurophysiology, and neurochemical pathways: a review. Brain Plasticity 2(2):127–152

Article  PubMed  PubMed Central  Google Scholar 

Brisswalter J, Collardeau M, René A (2002) Effects of acute physical exercise characteristics on cognitive performance. Sports Med 32:555–566

Article  PubMed  Google Scholar 

Byun K, Hyodo K, Suwabe K, Ochi G, Sakairi Y, Kato M, Soya H (2014) Positive effect of acute mild exercise on executive function via arousal-related prefrontal activations: an fNIRS study. Neuroimage 98:336–345

Article  PubMed  Google Scholar 

Chang YK, Labban JD, Gapin JI, Etnier JL (2012) The effects of acute exercise on cognitive performance: a meta-analysis. Brain Res 1453:87–101

Article  CAS  PubMed  Google Scholar 

Chmura J, Krysztofiak H, Ziemba AW, Nazar K, Kaciuba-Uścilko H (1997) Psychomotor performance during prolonged exercise above and below the blood lactate threshold. Eur J Appl Physiol 77:77–80

Article  Google Scholar 

de Lima NS, De Sousa RA, Amorim FT, Gripp F, Diniz e Magalhaes CO, Henrique Pinto S, Peixoto MF, Monteiro-Junior RS, Bourbeau K, Cassilhas RC (2022) Moderate-intensity continuous training and high-intensity interval training improve cognition, and BDNF levels of middle-aged overweight men. Metabolic Brain Dis 37(2):463–471

Article  Google Scholar 

Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, Kim JS, Heo S, Alves H, White SM, Wojcicki TR (2011) Exercise training increases size of hippocampus and improves memory. Proc National Acad Sci 108(7):3017–3022

Article  ADS  CAS  Google Scholar 

Fiorelli CM, Ciolac EG, Simieli L, Silva FA, Fernandes B, Christofoletti G, Barbieri FA (2019) Differential acute effect of high-intensity interval or continuous moderate exercise on cognition in individuals with Parkinson’s disease. J Phys Act Health 16(2):157–164

Article  PubMed  Google Scholar 

Fox S, Duggan M (2013) Health online 2013. Health 2013:1–55

Google Scholar 

Griffin ÉW, Mullally S, Foley C, Warmington SA, O’Mara SM, Kelly ÁM (2011) Aerobic exercise improves hippocampal function and increases BDNF in the serum of young adult males. Physiol Behav 104(5):934–941

Article  CAS  PubMed  Google Scholar 

Haapala EA (2013) Cardiorespiratory fitness and motor skills in relation to cognition and academic performance in children–a review. J Hum Kinet 36(1):55–68

Article  PubMed  PubMed Central  Google Scholar 

Helgerud J, Høydal K, Wang E, Karlsen T, Berg P, Bjerkaas M, Simonsen T, Helgesen C, Hjorth N, Bach R, Hoff J (2007) Aerobic high-intensity intervals improve VO2max more than moderate training. Med Sci Sports & Exercise 39(4):665–671

Article  Google Scholar 

Hillman CH, Snook EM, Jerome GJ (2003) Acute cardiovascular exercise and executive control function. Int J Psychophysiol 48(3):307–314

Article  PubMed  Google Scholar 

Hillman CH, Erickson KI, Kramer AF (2008) Be smart, exercise your heart: exercise effects on brain and cognition. Nat Rev Neurosci 9(1):58–65

Article  CAS  PubMed  Google Scholar 

Hüttermann S, Memmert D (2014) Does the inverted-U function disappear in expert athletes? An analysis of the attentional behavior under physical exercise of athletes and non-athletes. Physiol Behav 131:87–92

Article  PubMed  Google Scholar 

Ito S (2019) High-intensity interval training for health benefits and care of cardiac diseases-the key to an efficient exercise protocol. World J Cardiol 11(7):171

Article  PubMed  PubMed Central  Google Scholar 

Kao SC, Drollette ES, Ritondale JP, Khan N, Hillman CH (2018) The acute effects of high-intensity interval training and moderate-intensity continuous exercise on declarative memory and inhibitory control. Psychol Sport Exerc 38:90–99

Article  Google Scholar 

Kashihara K, Maruyama T, Murota M, Nakahara Y (2009) Positive effects of acute and moderate physical exercise on cognitive function. J Physiol Anthropol 28(4):155–164

Article  PubMed  Google Scholar 

Ludyga S, Gerber M, Brand S, Holsboer-Trachsler E, Pühse U (2016) Acute effects of moderate aerobic exercise on specific aspects of executive function in different age and fitness groups: a meta-analysis. Psychophysiology 53(11):1611–1626

Article  PubMed  Google Scholar 

McArdle WD, Katch FI, Katch VL (2010) Exercise physiology: nutrition, energy, and human performance. Lippincott Williams & Wilkins

Google Scholar 

Pontifex MB, Gwizdala KL, Parks AC, Billinger M, Brunner C (2017) Variability of ICA decomposition may impact EEG signals when used to remove eyeblink artifacts. Psychophysiology 54(3):386–398

Article  PubMed  Google Scholar 

Samuel RD, Zavdy O, Levav M, Reuveny R, Katz U, Dubnov-Raz G (2017) The effects of maximal intensity exercise on cognitive performance in children. J Hum Kinet 57(1):85–96

Article  PubMed  PubMed Central  Google Scholar 

Shenoy S, Khandekar P, Sathe A (2021) High intensity intermittent exercise plays a role in improving brain activation during complex executive functional tasks. Phys Ed Theory Methodol 21(1):36–42

Article  Google Scholar 

Stillman CM, Cohen J, Lehman ME, Erickson KI (2016) Mediators of physical activity on neurocognitive function: a review at multiple levels of analysis. Front Human Neurosci 10: 626

Article  Google Scholar 

Sun S, Zhang H, Kong Z, Shi Q, Tong TK, Nie J (2019) Twelve weeks of low volume sprint interval training improves cardio-metabolic health outcomes in overweight females. J Sports Sci 37(11):1257–1264

Article  CAS  PubMed  Google Scholar 

Thomas AG, Dennis A, Bandettini PA, Johansen-Berg H (2012) The effects of aerobic activity on brain structure. Front Psychol 3:86

Article  PubMed  PubMed Central  Google Scholar 

Tsukamoto H, Suga T, Takenaka S, Tanaka D, Takeuchi T, Hamaoka T, Isaka T, Hashimoto T (2016) Greater impact of acute high-intensity interval exercise on post-exercise executive function compared to moderate-intensity continuous exercise. Physiol Behav 1(155):224–230

Article  Google Scholar 

Wang J, Zhao X, Bi Y, Jiang S, Sun Y, Lang J, Han C (2023) Executive function elevated by long term high-intensity physical activity and the regulation role of beta-band activity in human frontal region. Cognit Neurodyn 17(6):1463–1472

Article  Google Scholar 

Winter B, Breitenstein C, Mooren FC, Voelker K, Fobker M, Lechtermann A, Krueger K, Fromme A, Korsukewitz C, Floel A, Knecht S (2007) High impact running improves learning. Neurobiol Learn Memory 87(4):597–609

Article  Google Scholar 

留言 (0)

沒有登入
gif