Phase transition of GvpU regulates gas vesicle clustering in bacteria

Greening, C. & Lithgow, T. Formation and function of bacterial organelles. Nat. Rev. Microbiol. 18, 677–689 (2020).

Article  CAS  PubMed  Google Scholar 

Uebe, R. & Schüler, D. Magnetosome biogenesis in magnetotactic bacteria. Nat. Rev. Microbiol. 14, 621–637 (2016).

Article  CAS  PubMed  Google Scholar 

Mauriello, E. Carboxysomes: how bacteria arrange their organelles. Elife 8, e43777 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Komeili, A., Li, Z., Newman, D. K. & Jensen, G. J. Magnetosomes are cell membrane invaginations organized by the actin-like protein MamK. Science 311, 242–245 (2006).

Article  CAS  PubMed  Google Scholar 

Scheffel, A. et al. An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria. Nature 440, 110–114 (2005).

Article  PubMed  Google Scholar 

Savage, D. F., Afonso, B., Chen, A. H. & Silver, P. A. Spatially ordered dynamics of the bacterial carbon fixation machinery. Science 327, 1258–1261 (2010).

Article  CAS  PubMed  Google Scholar 

Pfeifer, F. Distribution, formation and regulation of gas vesicles. Nat. Rev. Microbiol. 10, 705–715 (2012).

Article  CAS  PubMed  Google Scholar 

Walsby, A. E. Gas vesicles. Microbiol. Rev. 58, 94–144 (1994).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bourdeau, R. W. et al. Acoustic reporter genes for non-invasive imaging of microorganisms in mammalian hosts. Nature 553, 86–90 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Farhadi, A., Ho, G. H., Sawyer, D. P., Bourdeau, R. W. & Shapiro, M. G. Ultrasound imaging of gene expression in mammalian cells. Science 365, 1469–1475 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sawyer, D. P. et al. Ultrasensitive ultrasound imaging of gene expression with signal unmixing. Nat. Methods 18, 945–952 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu, G. J. et al. Acoustically modulated magnetic resonance imaging of gas-filled protein nanostructures. Nat. Mater. 17, 456–463 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shapiro, M. G. et al. Biogenic gas nanostructures as ultrasonic molecular reporters. Nat. Nanotechnol. 9, 311–316 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shapiro, M. G. et al. Genetically encoded reporters for hyperpolarized xenon magnetic resonance imaging. Nat. Chem. 6, 629–634 (2014).

Article  CAS  PubMed  Google Scholar 

Lu, G. J. et al. Genetically encodable contrast agents for optical coherence tomography. ACS Nano 14, 7823–7831 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hurt, R. C. et al. Genomically mined acoustic reporter genes for real-time in vivo monitoring of tumors and tumor-homing bacteria. Nat. Biotechnol. 41, 919–931 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lakshmanan, A. et al. Acoustic biosensors for ultrasound imaging of enzyme activity. Nat. Chem. Biol. 16, 988–996 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim, W. S. et al. Magneto-acoustic protein nanostructures for non-invasive imaging of tissue mechanics in vivo. Nat. Mater. 23, 290–300 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Bar-Zion, A. et al. Acoustically triggered mechanotherapy using genetically encoded gas vesicles. Nat. Nanotechnol. 16, 1403–1412 (2021).

Article  CAS  PubMed  Google Scholar 

Wu, D. et al. Biomolecular actuators for genetically selective acoustic manipulation of cells. Sci. Adv. 9, eadd9186 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang, Y. et al. In-vivo programmable acoustic manipulation of genetically engineered bacteria. Nat. Commun. 14, 3297 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shen, Q. et al. 50-nm gas-filled protein nanostructures to enable the access of lymphatic cells by ultrasound technologies. Preprint at bioRxiv https://doi.org/10.1101/2023.06.27.546433 (2023).

Ling, B. et al. Truly tiny acoustic biomolecules for ultrasound imaging and therapy. Adv. Mater https://doi.org/10.1002/adma.202307106 (2024).

Xie, L., Wang, J., Song, L., Jiang, T. & Yan, F. Cell-cycle dependent nuclear gene delivery enhances the effects of E-cadherin against tumor invasion and metastasis. Signal Transduct. Target. Ther. 8, 182 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Song, L. et al. Biogenic nanobubbles for effective oxygen delivery and enhanced photodynamic therapy of cancer. Acta Biomater. 108, 313–325 (2020).

Article  CAS  PubMed  Google Scholar 

Fernando, A. & Gariépy, J. Coupling chlorin e6 to the surface of nanoscale gas vesicles strongly enhance their intracellular delivery and photodynamic killing of cancer cells. Sci. Rep. 10, 2802 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hao, Y., Li, Z., Luo, J., Li, L. & Yan, F. Ultrasound molecular imaging of epithelial mesenchymal transition for evaluating tumor metastatic potential via targeted biosynthetic gas vesicles. Small 19, e2207940 (2023).

Article  PubMed  Google Scholar 

Anthis, A. H. C. et al. Modular stimuli-responsive hydrogel sealants for early gastrointestinal leak detection and containment. Nat. Commun. 13, 7311 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, N. & Cannon, M. C. Gas vesicle genes identified in Bacillus megaterium and functional expression in Escherichia coli. J. Bacteriol. 180, 2450–2458 (1998).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huber, S. T., Terwiel, D., Evers, W. H., Maresca, D. & Jakobi, A. J. Cryo-EM structure of gas vesicles for buoyancy-controlled motility. Cell 186, 975–986 e913 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lakshmanan, A. et al. Preparation of biogenic gas vesicle nanostructures for use as contrast agents for ultrasound and MRI. Nat. Protoc. 12, 2050–2080 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Offner, S., Hofacker, A., Wanner, G. & Pfeifer, F. Eight of fourteen gvp genes are sufficient for formation of gas vesicles in halophilic archaea. J. Bacteriol. 182, 4328–4336 (2000).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dzuricky, M., Rogers, B. A., Shahid, A., Cremer, P. S. & Chilkoti, A. De novo engineering of intracellular condensates using artificial disordered proteins. Nat. Chem. 12, 814–825 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Molliex, A. et al. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163, 123–133 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bremer, A. et al. Deciphering how naturally occurring sequence features impact the phase behaviours of disordered prion-like domains. Nat. Chem. 14, 196–207 (2022).

Article  CAS  PubMed  Google Scholar 

Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382 (2017).

Article  PubMed  Google Scholar 

Quiroz, F. G. & Chilkoti, A. Sequence heuristics to encode phase behaviour in intrinsically disordered protein polymers. Nat. Mater. 14, 1164–1171 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif