Greening, C. & Lithgow, T. Formation and function of bacterial organelles. Nat. Rev. Microbiol. 18, 677–689 (2020).
Article CAS PubMed Google Scholar
Uebe, R. & Schüler, D. Magnetosome biogenesis in magnetotactic bacteria. Nat. Rev. Microbiol. 14, 621–637 (2016).
Article CAS PubMed Google Scholar
Mauriello, E. Carboxysomes: how bacteria arrange their organelles. Elife 8, e43777 (2019).
Article PubMed PubMed Central Google Scholar
Komeili, A., Li, Z., Newman, D. K. & Jensen, G. J. Magnetosomes are cell membrane invaginations organized by the actin-like protein MamK. Science 311, 242–245 (2006).
Article CAS PubMed Google Scholar
Scheffel, A. et al. An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria. Nature 440, 110–114 (2005).
Savage, D. F., Afonso, B., Chen, A. H. & Silver, P. A. Spatially ordered dynamics of the bacterial carbon fixation machinery. Science 327, 1258–1261 (2010).
Article CAS PubMed Google Scholar
Pfeifer, F. Distribution, formation and regulation of gas vesicles. Nat. Rev. Microbiol. 10, 705–715 (2012).
Article CAS PubMed Google Scholar
Walsby, A. E. Gas vesicles. Microbiol. Rev. 58, 94–144 (1994).
Article CAS PubMed PubMed Central Google Scholar
Bourdeau, R. W. et al. Acoustic reporter genes for non-invasive imaging of microorganisms in mammalian hosts. Nature 553, 86–90 (2018).
Article CAS PubMed PubMed Central Google Scholar
Farhadi, A., Ho, G. H., Sawyer, D. P., Bourdeau, R. W. & Shapiro, M. G. Ultrasound imaging of gene expression in mammalian cells. Science 365, 1469–1475 (2019).
Article CAS PubMed PubMed Central Google Scholar
Sawyer, D. P. et al. Ultrasensitive ultrasound imaging of gene expression with signal unmixing. Nat. Methods 18, 945–952 (2021).
Article CAS PubMed PubMed Central Google Scholar
Lu, G. J. et al. Acoustically modulated magnetic resonance imaging of gas-filled protein nanostructures. Nat. Mater. 17, 456–463 (2018).
Article CAS PubMed PubMed Central Google Scholar
Shapiro, M. G. et al. Biogenic gas nanostructures as ultrasonic molecular reporters. Nat. Nanotechnol. 9, 311–316 (2014).
Article CAS PubMed PubMed Central Google Scholar
Shapiro, M. G. et al. Genetically encoded reporters for hyperpolarized xenon magnetic resonance imaging. Nat. Chem. 6, 629–634 (2014).
Article CAS PubMed Google Scholar
Lu, G. J. et al. Genetically encodable contrast agents for optical coherence tomography. ACS Nano 14, 7823–7831 (2020).
Article CAS PubMed PubMed Central Google Scholar
Hurt, R. C. et al. Genomically mined acoustic reporter genes for real-time in vivo monitoring of tumors and tumor-homing bacteria. Nat. Biotechnol. 41, 919–931 (2023).
Article CAS PubMed PubMed Central Google Scholar
Lakshmanan, A. et al. Acoustic biosensors for ultrasound imaging of enzyme activity. Nat. Chem. Biol. 16, 988–996 (2020).
Article CAS PubMed PubMed Central Google Scholar
Kim, W. S. et al. Magneto-acoustic protein nanostructures for non-invasive imaging of tissue mechanics in vivo. Nat. Mater. 23, 290–300 (2023).
Article PubMed PubMed Central Google Scholar
Bar-Zion, A. et al. Acoustically triggered mechanotherapy using genetically encoded gas vesicles. Nat. Nanotechnol. 16, 1403–1412 (2021).
Article CAS PubMed Google Scholar
Wu, D. et al. Biomolecular actuators for genetically selective acoustic manipulation of cells. Sci. Adv. 9, eadd9186 (2023).
Article CAS PubMed PubMed Central Google Scholar
Yang, Y. et al. In-vivo programmable acoustic manipulation of genetically engineered bacteria. Nat. Commun. 14, 3297 (2023).
Article CAS PubMed PubMed Central Google Scholar
Shen, Q. et al. 50-nm gas-filled protein nanostructures to enable the access of lymphatic cells by ultrasound technologies. Preprint at bioRxiv https://doi.org/10.1101/2023.06.27.546433 (2023).
Ling, B. et al. Truly tiny acoustic biomolecules for ultrasound imaging and therapy. Adv. Mater https://doi.org/10.1002/adma.202307106 (2024).
Xie, L., Wang, J., Song, L., Jiang, T. & Yan, F. Cell-cycle dependent nuclear gene delivery enhances the effects of E-cadherin against tumor invasion and metastasis. Signal Transduct. Target. Ther. 8, 182 (2023).
Article CAS PubMed PubMed Central Google Scholar
Song, L. et al. Biogenic nanobubbles for effective oxygen delivery and enhanced photodynamic therapy of cancer. Acta Biomater. 108, 313–325 (2020).
Article CAS PubMed Google Scholar
Fernando, A. & Gariépy, J. Coupling chlorin e6 to the surface of nanoscale gas vesicles strongly enhance their intracellular delivery and photodynamic killing of cancer cells. Sci. Rep. 10, 2802 (2020).
Article CAS PubMed PubMed Central Google Scholar
Hao, Y., Li, Z., Luo, J., Li, L. & Yan, F. Ultrasound molecular imaging of epithelial mesenchymal transition for evaluating tumor metastatic potential via targeted biosynthetic gas vesicles. Small 19, e2207940 (2023).
Anthis, A. H. C. et al. Modular stimuli-responsive hydrogel sealants for early gastrointestinal leak detection and containment. Nat. Commun. 13, 7311 (2022).
Article CAS PubMed PubMed Central Google Scholar
Li, N. & Cannon, M. C. Gas vesicle genes identified in Bacillus megaterium and functional expression in Escherichia coli. J. Bacteriol. 180, 2450–2458 (1998).
Article CAS PubMed PubMed Central Google Scholar
Huber, S. T., Terwiel, D., Evers, W. H., Maresca, D. & Jakobi, A. J. Cryo-EM structure of gas vesicles for buoyancy-controlled motility. Cell 186, 975–986 e913 (2023).
Article CAS PubMed PubMed Central Google Scholar
Lakshmanan, A. et al. Preparation of biogenic gas vesicle nanostructures for use as contrast agents for ultrasound and MRI. Nat. Protoc. 12, 2050–2080 (2017).
Article CAS PubMed PubMed Central Google Scholar
Offner, S., Hofacker, A., Wanner, G. & Pfeifer, F. Eight of fourteen gvp genes are sufficient for formation of gas vesicles in halophilic archaea. J. Bacteriol. 182, 4328–4336 (2000).
Article CAS PubMed PubMed Central Google Scholar
Dzuricky, M., Rogers, B. A., Shahid, A., Cremer, P. S. & Chilkoti, A. De novo engineering of intracellular condensates using artificial disordered proteins. Nat. Chem. 12, 814–825 (2020).
Article CAS PubMed PubMed Central Google Scholar
Molliex, A. et al. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163, 123–133 (2015).
Article CAS PubMed PubMed Central Google Scholar
Bremer, A. et al. Deciphering how naturally occurring sequence features impact the phase behaviours of disordered prion-like domains. Nat. Chem. 14, 196–207 (2022).
Article CAS PubMed Google Scholar
Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382 (2017).
Quiroz, F. G. & Chilkoti, A. Sequence heuristics to encode phase behaviour in intrinsically disordered protein polymers. Nat. Mater. 14, 1164–1171 (2015).
Comments (0)