The Protective Effects of Vitamin B Complex on Diclofenac Sodium-Induced Nephrotoxicity: The Role of NOX4/RhoA/ROCK

Abiola, Tijani S., Oyindamola C. Adebayo, and O.O. Babalola. 2019. Diclofenac-induced kidney damage in wistar rats: Involvement of antioxidant mechanism. Journal of Biosciences and Medicines 07: 44–57. https://doi.org/10.4236/jbm.2019.712005.

Article  CAS  Google Scholar 

Hasan, Iman H., Amira Badr, Haneen Almalki, Alanoud Alhindi, and Hesham S. Mostafa. 2023. Podocin, mTOR, and CHOP dysregulation contribute to nephrotoxicity induced of lipopolysaccharide/diclofenac combination in rats: Curcumin and silymarin could afford protective effect. Life Sciences 330: 121996. https://doi.org/10.1016/j.lfs.2023.121996.

Article  CAS  PubMed  Google Scholar 

McGettigan, Patricia, and David Henry. 2005. Current problems with non-specific COX inhibitors. Current Pharmaceutical Design 6: 1693–1724. https://doi.org/10.2174/1381612003398690.

Article  Google Scholar 

Douros, Antonios, Elisabeth Bronder, Andreas Klimpel, Christiane Erley, Edeltraut Garbe, and Reinhold Kreutz. 2018. Drug-induced kidney injury: A large case series from the Berlin case-control surveillance study. Clinical Nephrology 89 (2018): 18–26. https://doi.org/10.5414/CN109212.

Article  CAS  PubMed  Google Scholar 

Cooper, Cyrus, Roland Chapurlat, Nasser Al-Daghri, Gabriel Herrero-Beaumont, Olivier Bruyère, François Rannou, Roland Roth, Daniel Uebelhart, and Jean-Yves. Reginster. 2019. Safety of oral non-selective non-steroidal anti-inflammatory drugs in osteoarthritis: What does the literature say? Drugs & Aging 36: 15–24. https://doi.org/10.1007/s40266-019-00660-1.

Article  Google Scholar 

Abdulmajeed, N.A., H.S. Alnahdi, N.O. Ayas, and A.M. Mohamed. 2015. Amelioration of cardiotoxic impacts of diclofenac sodium by vitamin B complex. European Review for Medical and Pharmacological Sciences 19: 671–681.

CAS  PubMed  Google Scholar 

Willis, J.V., M.J. Kendall, R.M. Flinn, D.P. Thornhill, and P.G. Welling. 1979. The pharmacokinetics of diclofenac sodium following intravenous and oral administration. European Journal of Clinical Pharmacology 16: 405–410. https://doi.org/10.1007/BF00568201.

Article  CAS  PubMed  Google Scholar 

Davies, N.M., and K.E. Anderson. 1997. Clinical pharmacokinetics of diclofenac. Therapeutic insights and pitfalls. Clinical Pharmacokinetics 33: 184–213. https://doi.org/10.2165/00003088-199733030-00003.

Article  CAS  PubMed  Google Scholar 

Alorabi, Mohammed, Simona Cavalu, Hayder M. Al-Kuraishy, Ali I. Al-Gareeb, Gomaa Mostafa-Hedeab, Walaa A. Negm, Amal Youssef, Aya H. El-Kadem, Hebatallah M. Saad, and Gaber El-Saber. Batiha. 2022. Pentoxifylline and berberine mitigate diclofenac-induced acute nephrotoxicity in male rats via modulation of inflammation and oxidative stress. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 152: 113225. https://doi.org/10.1016/j.biopha.2022.113225.

Article  CAS  Google Scholar 

Yasmeen, Talat, Ghulam Sarwar Qureshi, and Sughra Perveen. 2007. Adverse effects of diclofenac sodium on renal parenchyma of adult albino rats. JPMA. The Journal of the Pakistan Medical Association 57: 349–351.

PubMed  Google Scholar 

Alabi, Quadri K., and Rufus O. Akomolafe. 2020. Kolaviron Diminishes diclofenac-induced liver and kidney toxicity in wistar rats via suppressing inflammatory events, upregulating antioxidant defenses, and improving hematological indices. Dose-Response 18: 1–12. https://doi.org/10.1177/1559325819899256.

Article  CAS  Google Scholar 

Famurewa, Ademola C., Gabriel G. Akunna, Joseph Nwafor, Onyebuchi C. Chukwu, Chima A. Ekeleme-Egedigwe, and Janet N. Oluniran. 2020. Nephroprotective activity of virgin coconut oil on diclofenac-induced oxidative nephrotoxicity is associated with antioxidant and anti-inflammatory effects in rats. Avicenna Journal of Phytomedicine 10: 316–324.

CAS  PubMed  PubMed Central  Google Scholar 

Nouri, Ali, and Esfandiar Heidarian. 2019. Ameliorative effects of N-acetyl cysteine on diclofenac-induced renal injury in male rats based on serum biochemical parameters, oxidative biomarkers, and histopathological study. Journal of Food Biochemistry 43: e12950. https://doi.org/10.1111/jfbc.12950.

Article  CAS  PubMed  Google Scholar 

Samarija, Ita, and Ljubica Bubić-Filipi. 2008. Renal impairment induced by nonselective prostaglandin inhibitor. Acta Medica Croatica: Casopis Hravatske Akademije Medicinskih Znanosti 62: 461–467.

PubMed  Google Scholar 

Al-Kuraishy, Hayder M., Ali I. Al-Gareeb, and Nawar R. Hussien. 2019. Synergistic effect of berberine and pentoxifylline in attenuation of acute kidney injury. International Journal of Critical Illness and Injury Science 9: 69–74. https://doi.org/10.4103/IJCIIS.IJCIIS_85_18.

Article  PubMed  PubMed Central  Google Scholar 

van Swelm, Rachel P. L., Coby M. M. Laarakkers, Jeanne C. L. M. Pertijs, Vivienne Verweij, Rosalinde Masereeuw, and Frans G. M. Russel. 2013. Urinary proteomic profiling reveals diclofenac-induced renal injury and hepatic regeneration in mice. Toxicology and Applied Pharmacology 269: 141–149. https://doi.org/10.1016/j.taap.2013.03.005.

Article  CAS  PubMed  Google Scholar 

Meng, Xiao-Ming., Gui-Ling. Ren, Li. Gao, Qin Yang, Hai-Di. Li, Wu. Wei-Feng, Cheng Huang, Lei Zhang, Xiong-Wen. Lv, and Jun Li. 2018. NADPH oxidase 4 promotes cisplatin-induced acute kidney injury via ROS-mediated programmed cell death and inflammation. Laboratory Investigation; a Journal of Technical Methods and Pathology 98: 63–78. https://doi.org/10.1038/labinvest.2017.120.

Article  CAS  PubMed  Google Scholar 

Sedeek, Mona, Rania Nasrallah, Rhian M. Touyz, and Richard L. Hébert. 2013. NADPH oxidases, reactive oxygen species, and the kidney: Friend and foe. Journal of the American Society of Nephrology: JASN 24: 1512–1518. https://doi.org/10.1681/ASN.2012111112.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Seccia, Teresa M., Matteo Rigato, Verdiana Ravarotto, and Lorenzo A. Calò. 2020. ROCK (RhoA/Rho kinase) in cardiovascular-renal pathophysiology: A review of new advancements. Journal of Clinical Medicine 9: 1328. https://doi.org/10.3390/jcm9051328.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feng, Yangbo, Philip V. LoGrasso, Olivier Defert, and Rongshi Li. 2016. Rho kinase (ROCK) inhibitors and their therapeutic potential. Journal of Medicinal Chemistry 59: 2269–2300. https://doi.org/10.1021/acs.jmedchem.5b00683.

Article  CAS  PubMed  Google Scholar 

Kolavennu, Vasantha, Lixia Zeng, Hui Peng, Yin Wang, and Farhad R. Danesh. 2008. Targeting of RhoA/ROCK signaling ameliorates progression of diabetic nephropathy independent of glucose control. Diabetes 57: 714–723. https://doi.org/10.2337/db07-1241.

Article  CAS  PubMed  Google Scholar 

Shi, Jianjian, and Lei Wei. 2007. Rho kinase in the regulation of cell death and survival. Archivum Immunologiae Et Therapiae Experimentalis 55: 61–75. https://doi.org/10.1007/s00005-007-0009-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gómez, Gonzalo I., Victoria Velarde, and Juan C. Sáez. 2019. Role of a RhoA/ROCK-dependent pathway on renal Connexin43 regulation in the angiotensin II-induced renal damage. International Journal of Molecular Sciences 20: 4408. https://doi.org/10.3390/ijms20184408.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jihua, Chen, Chen Cai, Bao Xubin, and Yu. Yue. 2020. Effects of dexmedetomidine on the RhoA /ROCK/ Nox4 signaling pathway in renal fibrosis of diabetic rats. Open Medicine (Poland) 14: 890–898. https://doi.org/10.1515/med-2019-0105.

Article  CAS  Google Scholar 

Manickam, Nagaraj, Mandakini Patel, Kathy K. Griendling, Yves Gorin, and Jeffrey L. Barnes. 2014. RhoA/Rho kinase mediates TGF-β1-induced kidney myofibroblast activation through Poldip2/Nox4-derived reactive oxygen species. American Journal of Physiology. Renal Physiology 307: F159-171. https://doi.org/10.1152/ajprenal.00546.2013.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xie, Xi., Xiuting Chang, Lei Chen, Kaipeng Huang, Juan Huang, Shaogui Wang, Xiaoyan Shen, Peiqing Liu, and Heqing Huang. 2013. Berberine ameliorates experimental diabetes-induced renal inflammation and fibronectin by inhibiting the activation of RhoA/ROCK signaling. Molecular and Cellular Endocrinology 381: 56–65. https://doi.org/10.1016/j.mce.2013.07.019.

Article  CAS  PubMed  Google Scholar 

Babelova, Andrea, Felix Jansen, Kerstin Sander, Matthias Löhn, Liliana Schäfer, Christian Fork, Hartmut Ruetten, et al. 2013. Activation of Rac-1 and RhoA contributes to podocyte injury in chronic kidney disease. PLoS ONE 8: e80328. https://doi.org/10.1371/journal.pone.0080328.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Mandić, Marija, Katarina Mitić, Predrag Nedeljković, Mina Perić, Bojan Božić, Tanja Lunić, Ana Bačić, Mirjana Rajilić-Stojanović, Sanja Peković, and Biljana Božić Nedeljković. 2022. Vitamin B complex and experimental autoimmune encephalomyelitis -attenuation of the clinical signs and gut microbiota dysbiosis. Nutrients 14: 1273. https://doi.org/10.3390/nu14061273.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ford, Talitha C., Luke A. Downey, Tamara Simpson, Grace McPhee, Chris Oliver, and Con Stough. 2018. The effect of a high-dose vitamin b multivitamin supplement on the relationship between brain metabolism and blood biomarkers of oxidative stress: A randomized control trial. Nutrients 10: 1860. https://doi.org/10.3390/nu10121860.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lindschinger, Meinrad, Franz Tatzber, Wolfgang Schimetta, Irene Schmid, Barbara Lindschinger, Gerhard Cvirn, Olaf Stanger, Eugenia Lamont, and Willibald Wonisch. 2019. A randomized pilot trial to evaluate the bioavailability of natural versus synthetic vitamin b complexes in healthy humans and their effects on homocysteine, oxidative stress, and antioxidant levels. Oxidative Medicine and Cellular Longevity 2019: 6082613. https://doi.org/10.1155/2019/6082613.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ullegaddi, Rajesh, Hilary J. Powers, and Salah E. Gariballa. 2004. B-group vitamin supplementation mitigates oxidative damage after acute ischaemic stroke. Clinical Science (London, England: 1979) 107: 477–484. https://doi.org/10.1042/CS20040134.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif