Defective prelamin A processing promotes unconventional necroptosis driven by nuclear RIPK1

Barrowman, J. & Michaelis, S. ZMPSTE24, an integral membrane zinc metalloprotease with a connection to progeroid disorders. Biol. Chem. 390, 761–773 (2009).

Article  CAS  PubMed  Google Scholar 

Spear, E. D. et al. ZMPSTE24 missense mutations that cause progeroid diseases decrease prelamin A cleavage activity and/or protein stability. Dis. Model Mech. 11, dmm033670 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Corrigan, D. P. et al. Prelamin A endoproteolytic processing in vitro by recombinant Zmpste24. Biochem. J. 387, 129–138 (2005).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dittmer, T. A. & Misteli, T. The lamin protein family. Genome Biol. 12, 222 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gruenbaum, Y. & Foisner, R. Lamins: nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation. Annu. Rev. Biochem. 84, 131–164 (2015).

Article  CAS  PubMed  Google Scholar 

Mattout, A., Dechat, T., Adam, S. A., Goldman, R. D. & Gruenbaum, Y. Nuclear lamins, diseases and aging. Curr. Opin. Cell Biol. 18, 335–341 (2006).

Article  CAS  PubMed  Google Scholar 

Young, S. G., Fong, L. G., Michaelis, S. & Prelamin, A. Zmpste24, misshapen cell nuclei, and progeria–new evidence suggesting that protein farnesylation could be important for disease pathogenesis. J. Lipid Res. 46, 2531–2558 (2005).

Article  CAS  PubMed  Google Scholar 

Davies, B. S., Fong, L. G., Yang, S. H., Coffinier, C. & Young, S. G. The posttranslational processing of prelamin A and disease. Annu Rev. Genomics Hum. Genet. 10, 153–174 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Davies, B. S. et al. Investigating the purpose of prelamin A processing. Nucleus 2, 4–9 (2011).

Article  PubMed  PubMed Central  Google Scholar 

Quigley, A. et al. The structural basis of ZMPSTE24-dependent laminopathies. Science 339, 1604–1607 (2013).

Article  CAS  PubMed  Google Scholar 

Barrowman, J., Hamblet, C., Kane, M. S. & Michaelis, S. Requirements for efficient proteolytic cleavage of prelamin A by ZMPSTE24. PLoS ONE 7, e32120 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Babatz, T. D. et al. Site specificity determinants for prelamin A cleavage by the zinc metalloprotease ZMPSTE24. J. Biol. Chem. 296, 100165 (2021).

Article  CAS  PubMed  Google Scholar 

Eriksson, M. et al. Recurrent de novo point mutations in lamin A cause Hutchinson–Gilford progeria syndrome. Nature 423, 293–298 (2003).

Article  CAS  PubMed  PubMed Central  Google Scholar 

De Sandre-Giovannoli, A. et al. Lamin a truncation in Hutchinson–Gilford progeria. Science 300, 2055 (2003).

Article  PubMed  Google Scholar 

Moulson, C. L. et al. Homozygous and compound heterozygous mutations in ZMPSTE24 cause the laminopathy restrictive dermopathy. J. Invest. Dermatol. 125, 913–919 (2005).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Agarwal, A. K., Fryns, J. P., Auchus, R. J. & Garg, A. Zinc metalloproteinase, ZMPSTE24, is mutated in mandibuloacral dysplasia. Hum. Mol. Genet. 12, 1995–2001 (2003).

Article  CAS  PubMed  Google Scholar 

Shackleton, S. et al. Compound heterozygous ZMPSTE24 mutations reduce prelamin A processing and result in a severe progeroid phenotype. J. Med. Genet. 42, e36 (2005).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Denecke, J. et al. A homozygous ZMPSTE24 null mutation in combination with a heterozygous mutation in the LMNA gene causes Hutchinson–Gilford progeria syndrome (HGPS): insights into the pathophysiology of HGPS. Hum. Mutat. 27, 524–531 (2006).

Article  CAS  PubMed  Google Scholar 

Navarro, C. L. et al. Loss of ZMPSTE24 (FACE-1) causes autosomal recessive restrictive dermopathy and accumulation of Lamin A precursors. Hum. Mol. Genet. 14, 1503–1513 (2005).

Article  CAS  PubMed  Google Scholar 

Pendas, A. M. et al. Defective prelamin A processing and muscular and adipocyte alterations in Zmpste24 metalloproteinase-deficient mice. Nat. Genet. 31, 94–99 (2002).

Article  CAS  PubMed  Google Scholar 

Bergo, M. O. et al. Zmpste24 deficiency in mice causes spontaneous bone fractures, muscle weakness, and a prelamin A processing defect. Proc. Natl Acad. Sci. USA 99, 13049–13054 (2002).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fong, L. G. et al. Heterozygosity for Lmna deficiency eliminates the progeria-like phenotypes in Zmpste24-deficient mice. Proc. Natl Acad. Sci. USA 101, 18111–18116 (2004).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Varela, I. et al. Accelerated ageing in mice deficient in Zmpste24 protease is linked to p53 signalling activation. Nature 437, 564–568 (2005).

Article  CAS  PubMed  Google Scholar 

Fong, L. G. et al. Prelamin A and lamin A appear to be dispensable in the nuclear lamina. J. Clin. Investig. 116, 743–752 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Degterev, A. et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat. Chem. Biol. 1, 112–119 (2005).

Article  CAS  PubMed  Google Scholar 

Weinlich, R., Oberst, A., Beere, H. M. & Green, D. R. Necroptosis in development, inflammation and disease. Nat. Rev. Mol. Cell Biol. 18, 127–136 (2017).

Article  CAS  PubMed  Google Scholar 

Yuan, J., Amin, P. & Ofengeim, D. Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases. Nat. Rev. Neurosci. 20, 19–33 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu, D., Zou, C. & Yuan, J. Genetic regulation of RIPK1 and necroptosis. Annu. Rev. Genet. 55, 235–263 (2021).

Article  CAS  PubMed  Google Scholar 

Pasparakis, M. & Vandenabeele, P. Necroptosis and its role in inflammation. Nature 517, 311–320 (2015).

Article  CAS  PubMed  Google Scholar 

Annibaldi, A. & Meier, P. Checkpoints in TNF-induced cell death: implications in inflammation and cancer. Trends Mol. Med. 24, 49–65 (2018).

Article  CAS  PubMed  Google Scholar 

Osorio, F. G. et al. Nuclear lamina defects cause ATM-dependent NF-kappaB activation and link accelerated aging to a systemic inflammatory response. Genes Dev. 26, 2311–2324 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

He, S. et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 137, 1100–1111 (2009).

Article  CAS  PubMed  Google Scholar 

Zhang, D. W. et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325, 332–336 (2009).

Article  CAS  PubMed  Google Scholar 

Cho, Y. S. et al. Phosphorylation-driven assembly of the RIP1–RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137, 1112–1123 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, H. et al. Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol. Cell 54, 133–146 (2014).

Article  CAS  PubMed  Google Scholar 

Cai, Z. et al. Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nat. Cell Biol. 16, 55–65 (2014).

Article  CAS  PubMed  Google Scholar 

Li, W. et al. Nuclear RIPK1 promotes chromatin remodeling to mediate inflammatory response. Cell Res. 32, 621–637 (2022).

Comments (0)

No login
gif