Disordered C-terminal domain drives spatiotemporal confinement of RNAPII to enhance search for chromatin targets

Cramer, P., Bushnell, D. A. & Kornberg, R. D. Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution. Science 292, 1863–1876 (2001).

Article  CAS  PubMed  Google Scholar 

Corden, J. L. RNA polymerase II C-terminal domain: tethering transcription to transcript and template. Chem. Rev. 113, 8423–8455 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eick, D. & Geyer, M. The RNA polymerase II carboxy-terminal domain (CTD) code. Chem. Rev. 113, 8456–8490 (2013).

Article  CAS  PubMed  Google Scholar 

Harlen, K. M. & Churchman, L. S. The code and beyond: transcription regulation by the RNA polymerase II carboxy-terminal domain. Nat. Rev. Mol. Cell Biol. 18, 263–273 (2017).

Article  CAS  PubMed  Google Scholar 

Buratowski, S. Progression through the RNA polymerase II CTD cycle. Mol. Cell 36, 541–546 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thompson, C. M., Koleske, A. J., Chao, D. M. & Young, R. A. A multisubunit complex associated with the RNA polymerase II CTD and TATA-binding protein in yeast. Cell 73, 1361–1375 (1993).

Article  CAS  PubMed  Google Scholar 

West, M. L. & Corden, J. L. Construction and analysis of yeast RNA polymerase II CTD deletion and substitution mutations. Genetics 140, 1223–1233 (1995).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hsin, J. P., Sheth, A. & Manley, J. L. RNAP II CTD phosphorylated on threonine-4 is required for histone mRNA 3′-end processing. Science 334, 683–686 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bartolomei, M. S., Halden, N. F., Cullen, C. R. & Corden, J. L. Genetic analysis of the repetitive carboxyl-terminal domain of the largest subunit of mouse RNA polymerase II. Mol. Cell. Biol. 8, 330–339 (1988).

CAS  PubMed  PubMed Central  Google Scholar 

Litingtung, Y. et al. Growth retardation and neonatal lethality in mice with a homozygous deletion in the C-terminal domain of RNA polymerase II. Mol. Gen. Genet. 261, 100–105 (1999).

Article  CAS  PubMed  Google Scholar 

Babokhov, M., Mosaheb, M. M., Baker, R. W. & Fuchs, S. M. Repeat-specific functions for the C-terminal domain of RNA polymerase II in budding yeast. G3 (Bethesda) 8, 1593–1601 (2018).

Article  CAS  PubMed  Google Scholar 

Meisels, E., Gileadi, O. & Corden, J. L. Partial truncation of the yeast RNA polymerase II carboxyl-terminal domain preferentially reduces expression of glycolytic genes. J. Biol. Chem. 270, 31255–31261 (1995).

Article  CAS  PubMed  Google Scholar 

Quintero-Cadena, P., Lenstra, T. L. & Sternberg, P. W. RNA Pol II length and disorder enable cooperative scaling of transcriptional bursting. Mol. Cell 79, 207–220 e208 (2020).

Article  CAS  PubMed  Google Scholar 

Sawicka, A. et al. Transcription activation depends on the length of the RNA polymerase II C-terminal domain. EMBO J. 40, e107015 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Allison, L. A. & Ingles, C. J. Mutations in RNA polymerase II enhance or suppress mutations in GAL4. Proc. Natl Acad. Sci. USA 86, 2794–2798 (1989).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Scafe, C. et al. RNA polymerase II C-terminal repeat influences response to transcriptional enhancer signals. Nature 347, 491–494 (1990).

Article  CAS  PubMed  Google Scholar 

Gerber, H. P. et al. RNA polymerase II C-terminal domain required for enhancer-driven transcription. Nature 374, 660–662 (1995).

Article  CAS  PubMed  Google Scholar 

Chapman, R. D., Heidemann, M., Hintermair, C. & Eick, D. Molecular evolution of the RNA polymerase II CTD. Trends Genet. 24, 289–296 (2008).

Article  CAS  PubMed  Google Scholar 

Yang, C. & Stiller, J. W. Evolutionary diversity and taxon-specific modifications of the RNA polymerase II C-terminal domain. Proc. Natl Acad. Sci. USA 111, 5920–5925 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boehning, M. et al. RNA polymerase II clustering through carboxy-terminal domain phase separation. Nat. Struct. Mol. Biol. 25, 833–840 (2018).

Article  CAS  PubMed  Google Scholar 

Lu, H. et al. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II. Nature 558, 318–323 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo, Y. E. et al. Pol II phosphorylation regulates a switch between transcriptional and splicing condensates. Nature 572, 543–548 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cho, W. K. et al. RNA polymerase II cluster dynamics predict mRNA output in living cells. eLife https://doi.org/10.7554/eLife.13617 (2016).

Cisse, I. I. et al. Real-time dynamics of RNA polymerase II clustering in live human cells. Science 341, 664–667 (2013).

Article  CAS  PubMed  Google Scholar 

Cho, W. K. et al. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science 361, 412–415 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boija, A. et al. Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell 175, 1842–1855.e1816 (2018).

Article  CAS  PubMed  Google Scholar 

Wei, M. T. et al. Nucleated transcriptional condensates amplify gene expression. Nat. Cell Biol. 22, 1187–1196 (2020).

Article  CAS  PubMed  Google Scholar 

McSwiggen, D. T., Mir, M., Darzacq, X. & Tjian, R. Evaluating phase separation in live cells: diagnosis, caveats, and functional consequences. Genes Dev. 33, 1619–1634 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Musacchio, A. On the role of phase separation in the biogenesis of membraneless compartments. EMBO J. 41, e109952 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chong, S. et al. Imaging dynamic and selective low-complexity domain interactions that control gene transcription. Science https://doi.org/10.1126/science.aar2555 (2018).

Palacio, M. & Taatjes, D. J. Merging established mechanisms with new insights: condensates, hubs, and the regulation of RNA polymerase II transcription. J. Mol. Biol. 434, 167216 (2022).

Article  CAS  PubMed  Google Scholar 

Tjong, H., Gong, K., Chen, L. & Alber, F. Physical tethering and volume exclusion determine higher-order genome organization in budding yeast. Genome Res. 22, 1295–1305 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gasser, S. M., Hediger, F., Taddei, A., Neumann, F. R. & Gartenberg, M. R. The function of telomere clustering in yeast: the circe effect. Cold Spring Harb. Symp. Quant. Biol. 69, 327–337 (2004).

Article  CAS  PubMed  Google Scholar 

Rosa, A. & Everaers, R. Structure and dynamics of interphase chromosomes. PLoS Comput. Biol. 4, e1000153 (2008).

Article  PubMed  PubMed Central  Google Scholar 

Zimmer, C. & Fabre, E. Principles of chromosomal organization: lessons from yeast. J. Cell Biol. 192, 723–733 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Berger, A. B. et al. High-resolution statistical mapping reveals gene territories in live yeast. Nat. Methods 5, 1031–1037 (2008).

Article  CAS  PubMed  Google Scholar 

Duan, Z. et al. A three-dimensional model of the yeast genome. Nature 465, 363–367 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miura, F. et al. Absolute quantification of the budding yeast transcriptome by means of competitive PCR between genomic and complementary DNAs. BMC Genom. 9, 574 (2008).

留言 (0)

沒有登入
gif