Exploring the Cocktail Factor Approach to Generate Salivary Gland Progenitors through Co-Culture Techniques

Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, Clevers H. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009;459:262–5.

Article  ADS  CAS  PubMed  Google Scholar 

McCauley HA, Wells JM. Pluripotent stem cfell-derived organoids: using principles of developmental biology to grow human tissues in a dish. Development. 2017;144:958–62.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Artegiani B, Clevers H. Use and application of 3D-organoid technology. Hum Mol Genet. 2018;27:R99–107.

Article  CAS  PubMed  Google Scholar 

Kretzschmar K. Cancer research using organoid technology. J Mol Med (Berl). 2021;99:501–15.

Article  PubMed  Google Scholar 

Rossi G, Manfrin A, Lutolf MP. Progress and potential in organoid research. Nat Rev Genet. 2018;19:671–87.

Article  CAS  PubMed  Google Scholar 

Nguyen R, Da Won BS, Qiao L, George J. Developing liver organoids from induced pluripotent stem cells (iPSCs): An alternative source of organoid generation for liver cancer research. Cancer Lett. 2021;508:13–7.

Article  CAS  PubMed  Google Scholar 

Eiraku M, Watanabe K, Matsuo-Takasaki M, Kawada M, Yonemura S, Matsumura M, et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell. 2008;3:519–32.

Article  CAS  PubMed  Google Scholar 

Cowan CS, Renner M, De Gennaro M, Gross-Scherf B, Goldblum D, Hou Y, et al. Cell types of the human retina and its organoids at single-cell resolution. Cell. 2020;182:1623-1640.e34.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gjorevski N, Nikolaev M, Brown TE, Mitrofanova O, Brandenberg N, DelRio FW, et al. Tissue geometry drives deterministic organoid patterning. Science. 2022;375:9021.

Article  Google Scholar 

Artegiani B, Hendriks D, Beumer J, Kok R, Zheng X, Joore I, et al. Fast and efficient generation of knock-in human organoids using homology-independent CRISPR-Cas9 precision genome editing. Nat Cell Biol. 2020;22:321–31.

Article  CAS  PubMed  Google Scholar 

Nikolaev M, Mitrofanova O, Broguiere N, Geraldo S, Dutta D, Tabata Y, et al. Homeostatic mini-intestines through scaffold-guided organoid morphogenesis. Nature. 2020;585:574–8.

Article  ADS  PubMed  Google Scholar 

Takasato M, Er PX, Becroft M, Vanslambrouck JM, Stanley EG, Elefanty AG, et al. Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney. Nat Cell Biol. 2014;16:118–26.

Article  CAS  PubMed  Google Scholar 

Gaebler M, Silvestri A, Haybaeck J, Reichardt P, Lowery CD, Stancato LF, et al. Three-dimensional patient-derived in vitro sarcoma models: promising tools for improving clinical tumor management. Front Oncol. 2017;7:203.

Article  PubMed  PubMed Central  Google Scholar 

Proctor GB, Shaalan AM. Disease-induced changes in salivary gland function and the composition of saliva. J Dent Res. 2021;100:1201–9.

Article  CAS  PubMed  Google Scholar 

Pedersen AML, Sørensen CE, Proctor GB, Carpenter GH, Ekström J. Salivary secretion in health and disease. J Oral Rehabil. 2018;45:730–46.

Article  CAS  PubMed  Google Scholar 

Carpenter GH. The secretion, components, and properties of saliva. Annu Rev Food Sci Technol. 2013;4:267–76.

Article  CAS  PubMed  Google Scholar 

Tanaka J, Ogawa M, Hojo H, Kawashima Y, Mabuchi Y, Hata K, et al. Generation of orthotopically functional salivary gland from embryonic stem cells. Nat Commun. 2018;9:4216.

Article  ADS  PubMed  PubMed Central  Google Scholar 

Zhang S, Sui Y, Yan S, Zhang Y, Ding C, Su X, et al. Retinoic acid and FGF10 promote the differentiation of pluripotent stem cells into salivary gland placodes. Stem Cell Res Ther. 2022;13:368.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tucker AS. Salivary gland development. Semin Cell Dev Biol. 2007;18:237–44.

Article  CAS  PubMed  Google Scholar 

Patel VN, Hoffman MP. Salivary gland development: a template for regeneration. Semin Cell Dev Biol. 2014;25–6:52–60.

Article  PubMed  Google Scholar 

Emmerson E, Knox SM. Salivary gland stem cells: a review of development, regeneration and cancer. Genesis. 2018;56:e23211.

Article  PubMed  PubMed Central  Google Scholar 

Knosp WM, Knox SM, Hoffman MP. Salivary gland organogenesis. Wiley Interdiscip Rev Dev Biol. 2012;1:69–82.

Article  CAS  PubMed  Google Scholar 

Chatzeli L, Gaete M, Tucker AS. Fgf10 and Sox9 are essential for the establishment of distal progenitor cells during mouse salivary gland development. Development. 2017;144:2294–305.

CAS  PubMed  PubMed Central  Google Scholar 

Athwal HK, Murphy G 3rd, Tibbs E, Cornett A, Hill E, Yeoh K, et al. Sox10 regulates plasticity of epithelial progenitors toward secretory units of exocrine glands. Stem Cell Reports. 2019;12:366–80.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Knosp WM, Knox SM, Lombaert IM, Haddox CL, Patel VN, Hoffman MP. Submandibular parasympathetic gangliogenesis requires sprouty-dependent Wnt signals from epithelial progenitors. Dev Cell. 2015;32:667–77.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kawakami M, Ishikawa H, Tachibana T, Tanaka A, Mataga I. Functional transplantation of salivary gland cells differentiated from mouse early ES cells in vitro. Hum Cell. 2013;26:80–90.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ono H, Obana A, Usami Y, Sakai M, Nohara K, Egusa H, et al. Regenerating salivary glands in the microenvironment of induced pluripotent stem cells. Biomed Res Int. 2015;2015: 293570.

Article  PubMed  PubMed Central  Google Scholar 

Hauser BR, Hoffman MP. Regulatory mechanisms driving salivary gland organogenesis. Curr Top Dev Biol. 2015;115:111–30.

Article  PubMed  PubMed Central  Google Scholar 

Ogawa M, Oshima M, Imamura A, Sekine Y, Ishida K, Yamashita K, et al. Functional salivary gland regeneration by transplantation of a bioengineered organ germ. Nat Commun. 2013;4:2498.

Article  ADS  PubMed  Google Scholar 

Ou DB, Zeng D, Jin Y, Liu XT, Teng JW, Guo WG, et al. The long-term differentiation of embryonic stem cells into cardiomyocytes: an indirect co-culture model. PLoS one. 2013;8: e55233.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Tanaka J, Takamatsu K, Yukimori A, Kujiraoka S, Ishida S, Takakura I, et al. Sox9 function in salivary gland development. J Oral Biosci. 2021;63:8–13.

Article  CAS  PubMed  Google Scholar 

Shimasaki T, Yamamoto S, Arisawa T. Exosome research and co-culture study. Biol Pharm Bull. 2018;41:1311–21.

Article  CAS  PubMed  Google Scholar 

Aure M, Symonds J, Villapudua C, Dodge J, Werner S, Knosp W, et al. FGFR2b is essential for salivary gland duct homeostasis and MAPK-dependent seromucous acinar cell differentiation. Nat Commun. 2023;14:6485.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Min S, Oyelakin A, Gluck C, Bard JE, Song EC, Smalley K, et al. p63 and its target follistatin maintain salivary gland stem/progenitor cell function through TGF-beta/activin signaling. iScience. 2020;23:101524.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Sakai M, Fukumoto M, Ikai K, Ono Minagi H, Inagaki S, Kogo M, et al. Role of the mTOR signalling pathway in salivary gland development. FEBS J. 2019;286:3701–17.

Article  CAS  PubMed  Google Scholar 

Enger TB, Samad-Zadeh A, Bouchie MP, Skarstein K, Galtung HK, Mera T, et al. The Hippo signaling pathway is required for salivary gland development and its dysregulation is associated with Sjogren’s syndrome. Lab Invest. 2013;93:1203–18.

Article 

留言 (0)

沒有登入
gif