APOE4 genotype and aging impair injury-induced microglial behavior in brain slices, including toward Aβ, through P2RY12

2022 Alzheimer's disease facts and figures. Alzheimers Dement. 2022;18(4), 700–789. https://doi.org/10.1002/alz.12638.

Bu G. Apolipoprotein E and its receptors in Alzheimer’s disease: pathways, pathogenesis and therapy. Nat Rev Neurosci. 2009;10(5):333–44. https://doi.org/10.1038/nrn2620.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Flowers SA, Rebeck GW. APOE in the normal brain. Neurobiol Dis. 2020;136: 104724. https://doi.org/10.1016/j.nbd.2019.104724.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liang X, Wu H, Colt M, Guo X, Pluimer B, Zeng J, Dong S, Zhao Z. Microglia and its Genetics in Alzheimer’s Disease. Curr Alzheimer Res. 2021;18(9):676–88. https://doi.org/10.2174/1567205018666211105140732.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fernandez CG, Hamby ME, McReynolds ML, Ray WJ. The Role of APOE4 in Disrupting the Homeostatic Functions of Astrocytes and Microglia in Aging and Alzheimer’s Disease. Front Aging Neurosci. 2019;11:14. https://doi.org/10.3389/fnagi.2019.00014.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sierra A, Paolicelli RC, Kettenmann H. Cien Anos de Microglia: Milestones in a Century of Microglial Research. Trends Neurosci. 2019;42(11):778–92. https://doi.org/10.1016/j.tins.2019.09.004.

Article  CAS  PubMed  Google Scholar 

Keren-Shaul, H., Spinrad, A., Weiner, A., Matcovitch-Natan, O., Dvir-Szternfeld, R., Ulland, T. K., David, E., Baruch, K., Lara-Astaiso, D., Toth, B., Itzkovitz, S., Colonna, M., Schwartz, M., & Amit, I. (2017). A Unique Microglia Type Associated with Restricting Development of Alzheimer's Disease. Cell, 169(7), 1276–1290 e1217. https://doi.org/10.1016/j.cell.2017.05.018.

Rangaraju S, Dammer EB, Raza SA, Rathakrishnan P, Xiao H, Gao T, Duong DM, Pennington MW, Lah JJ, Seyfried NT, Levey AI. Identification and therapeutic modulation of a pro-inflammatory subset of disease-associated-microglia in Alzheimer’s disease. Mol Neurodegener. 2018;13(1):24. https://doi.org/10.1186/s13024-018-0254-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, B., Gaiteri, C., Bodea, L. G., Wang, Z., McElwee, J., Podtelezhnikov, A. A., Zhang, C., Xie, T., Tran, L., Dobrin, R., Fluder, E., Clurman, B., Melquist, S., Narayanan, M., Suver, C., Shah, H., Mahajan, M., Gillis, T., Mysore, J., . . . Emilsson, V. (2013). Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer's disease. Cell, 153(3), 707–720. https://doi.org/10.1016/j.cell.2013.03.030.

Butovsky O, Weiner HL. Microglial signatures and their role in health and disease. Nat Rev Neurosci. 2018;19(10):622–35. https://doi.org/10.1038/s41583-018-0057-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Haynes SE, Hollopeter G, Yang G, Kurpius D, Dailey ME, Gan WB, Julius D. The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci. 2006;9(12):1512–9. https://doi.org/10.1038/nn1805.

Article  CAS  PubMed  Google Scholar 

Sipe GO, Lowery RL, Tremblay M, Kelly EA, Lamantia CE, Majewska AK. Microglial P2Y12 is necessary for synaptic plasticity in mouse visual cortex. Nat Commun. 2016;7:10905. https://doi.org/10.1038/ncomms10905.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Rodriguez GA, Tai LM, LaDu MJ, Rebeck GW. Human APOE4 increases microglia reactivity at Aβ plaques in a mouse model of Aβ deposition. J Neuroinflammation. 2014;11:111. https://doi.org/10.1186/1742-2094-11-111.

Article  PubMed  PubMed Central  Google Scholar 

Bennett, F. C., Bennett, M. L., Yaqoob, F., Mulinyawe, S. B., Grant, G. A., Hayden Gephart, M., Plowey, E. D., & Barres, B. A. (2018). A Combination of Ontogeny and CNS Environment Establishes Microglial Identity. Neuron. 98(6), 1170–1183 e1178. https://doi.org/10.1016/j.neuron.2018.05.014.

Bohlen, C. J., Bennett, F. C., Tucker, A. F., Collins, H. Y., Mulinyawe, S. B., & Barres, B. A. Diverse Requirements for Microglial Survival, Specification, and Function Revealed by Defined-Medium Cultures. Neuron. 2017;94(4), 759–773 e758. https://doi.org/10.1016/j.neuron.2017.04.043.

Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G, Koeglsperger T, Dake B, Wu PM, Doykan CE, Fanek Z, Liu L, Chen Z, Rothstein JD, Ransohoff RM, Gygi SP, Antel JP, Weiner HL. Identification of a unique TGF-beta-dependent molecular and functional signature in microglia. Nat Neurosci. 2014;17(1):131–43. https://doi.org/10.1038/nn.3599.

Article  CAS  PubMed  Google Scholar 

Foley KE, Hewes AA, Garceau DT, Kotredes KP, Carter GW, Sasner M, Howell GR. The APOE (epsilon3/epsilon4) Genotype Drives Distinct Gene Signatures in the Cortex of Young Mice. Front Aging Neurosci. 2022;14: 838436. https://doi.org/10.3389/fnagi.2022.838436.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sepulveda J, Luo N, Nelson M, Ng CAS, Rebeck GW. Independent APOE4 knock-in mouse models display reduced brain APOE protein, altered neuroinflammation, and simplification of dendritic spines. J Neurochem. 2022. https://doi.org/10.1111/jnc.15665.

Article  PubMed  PubMed Central  Google Scholar 

Sepulveda-Rodriguez, A., Li, P., Khan, T., Ma, J. D., Carlone, C. A., Bozzelli, P. L., Conant, K. E., Forcelli, P. A., & Vicini, S. (2019). Electroconvulsive Shock Enhances Responsive Motility and Purinergic Currents in Microglia in the Mouse Hippocampus. eNeuro, 6(2). https://doi.org/10.1523/ENEURO.0056-19.2019

Jairaman, A., McQuade, A., Granzotto, A., Kang, Y. J., Chadarevian, J. P., Gandhi, S., Parker, I., Smith, I., Cho, H., Sensi, S. L., Othy, S., Blurton-Jones, M., & Cahalan, M. D. (2022). TREM2 regulates purinergic receptor-mediated calcium signaling and motility in human iPSC-derived microglia. Elife, 11. https://doi.org/10.7554/eLife.73021.

Avignone E, Milior G, Arnoux I, Audinat E. Electrophysiological Investigation of Microglia. Methods Mol Biol. 2019;2034:111–25. https://doi.org/10.1007/978-1-4939-9658-2_9.

Article  CAS  PubMed  Google Scholar 

Young, K., & Morrison, H. (2018). Quantifying Microglia Morphology from Photomicrographs of Immunohistochemistry Prepared Tissue Using ImageJ. J Vis Exp(136). https://doi.org/10.3791/57648.

Thevenaz P, Ruttimann UE, Unser M. A pyramid approach to subpixel registration based on intensity. IEEE Trans Image Process. 1998;7(1):27–41. https://doi.org/10.1109/83.650848.

Article  ADS  CAS  PubMed  Google Scholar 

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–82. https://doi.org/10.1038/nmeth.2019.

Article  CAS  PubMed  Google Scholar 

Pinto, B., Morelli, G., Rastogi, M., Savardi, A., Fumagalli, A., Petretto, A., Bartolucci, M., Varea, E., Catelani, T., Contestabile, A., Perlini, L. E., & Cancedda, L. (2020). Rescuing Over-activated Microglia Restores Cognitive Performance in Juvenile Animals of the Dp(16) Mouse Model of Down Syndrome. Neuron, 108(5), 887–904 e812. https://doi.org/10.1016/j.neuron.2020.09.010.

Etienne, F., Mastrolia, V., Maroteaux, L., Girault, J. A., Gervasi, N., & Roumier, A. (2019). Two-photon Imaging of Microglial Processes' Attraction Toward ATP or Serotonin in Acute Brain Slices. J Vis Exp(143). https://doi.org/10.3791/58788

Zott B, Simon MM, Hong W, Unger F, Chen-Engerer HJ, Frosch MP, Sakmann B, Walsh DM, Konnerth A. A vicious cycle of beta amyloid-dependent neuronal hyperactivation. Science. 2019;365(6453):559–65. https://doi.org/10.1126/science.aay0198.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Hanisch UK, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci. 2007;10(11):1387–94. https://doi.org/10.1038/nn1997.

Article  CAS  PubMed  Google Scholar 

Ransohoff RM, Perry VH. Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol. 2009;27:119–45. https://doi.org/10.1146/annurev.immunol.021908.132528.

Article  CAS  PubMed  Google Scholar 

De Biase, L. M., Schuebel, K. E., Fusfeld, Z. H., Jair, K., Hawes, I. A., Cimbro, R., Zhang, H. Y., Liu, Q. R., Shen, H., Xi, Z. X., Goldman, D., & Bonci, A. (2017). Local Cues Establish and Maintain Region-Specific Phenotypes of Basal Ganglia Microglia. Neuron, 95(2), 341–356 e346. https://doi.org/10.1016/j.neuron.2017.06.020.

Igarashi KM. Entorhinal cortex dysfunction in Alzheimer’s disease. Trends Neurosci. 2023;46(2):124–36. https://doi.org/10.1016/j.tins.2022.11.006.

Article  CAS  PubMed  Google Scholar 

Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB. ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci. 2005;8(6):752–8. https://doi.org/10.1038/nn1472.

Article  CAS  PubMed  Google Scholar 

Chagas, L. D. S., Sandre, P. C., Ribeiro, E. R. N. C. A., Marcondes, H., Oliveira Silva, P., Savino, W., & Serfaty, C. A. (2020). Environmental Signals on Microglial Function during Brain Development, Neuroplasticity, and Disease. Int J Mol Sci, 21(6). https://doi.org/10.3390/ijms21062111.

Masuda T, Sankowski R, Staszewski O, Prinz M. Microglia Heterogeneity in the Single-Cell Era. Cell Rep. 2020;30(5):1271–81. https://doi.org/10.1016/j.celrep.2020.01.010.

Article  CAS  PubMed  Google Scholar 

Fan YY, Cai QL, Gao ZY, Lin X, Huang Q, Tang W, Liu JH. APOE epsilon4 allele elevates the expressions of inflammatory factors and promotes Alzheimer’s disease progression: A comparative study based on Han and She populations in the Wenzhou area. Brain Res Bull. 2017;132:39–43. https://doi.org/10.1016/j.brainresbull.2017.04.017.

Article  CAS  PubMed  Google Scholar 

Krasemann, S., Madore, C., Cialic, R., Baufeld, C., Calcagno, N., El Fatimy, R., Beckers, L., O'Loughlin, E., Xu, Y., Fanek, Z., Greco, D. J., Smith, S. T., Tweet, G., Humulock, Z., Zrzavy, T., Conde-Sanroman, P., Gacias, M., Weng, Z., Chen, H., . . . Butovsky, O. (2017). The TREM2-APOE Pathway Drives the Transcriptional Phenotype of Dysfunctional Microglia in Neurodegenerative Diseases. Immunity, 47(3), 566–581 e569. https://doi.org/10.1016/j.immuni.2017.08.008.

Mosher KI, Wyss-Coray T. Microglial dysfunction in brain aging and Alzheimer’s disease. Biochem Pharmacol. 2014;88(4):594–604. https://doi.org/10.1016/j.bcp.2014.01.008.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Seto M, Weiner RL, Dumitrescu L, Hohman TJ. Protective genes and pathways in Alzheimer’s disease: moving towards precision interventions. Mol Neurodegener. 2021;16(1):29. https://doi.org/10.1186/s13024-021-00452-5.

Article  PubMed  PubMed Central  Google Scholar 

Eyo UB, Bispo A, Liu J, Sabu S, Wu R, DiBona VL, Zheng J, Murugan M, Zhang H, Tang Y, Wu LJ. The GluN2A Subunit Regulates Neuronal NMDA receptor-Induced Microglia-Neuron Physical Interactions. Sci Rep. 2018;8(1):828. https://doi.org/10.1038/s41598-018-19205-4.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif