Genome Stability of Bacillus velezensis after Two-Year Exposure in Open Space

Horneck G., Klaus D. M., Rocco L. 2010. Space Microbiology. Microbiol. Mol. Biol. Rev. 74, 121–156.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Horneck G., Bucker H., Reitz G. 1994. Long-term survival of bacteria spores in space. Adv. Space Res. 14, 41–45.

Article  ADS  CAS  PubMed  Google Scholar 

Rabbow E., Rettberg P., Barczyk S., Bohmeier M., Parpart A., Panitz C., Horneck G., Burfeindt J., Molter F., Jaramillo F. 2015. The astrobiological mission EXPOSE-R on board of the International Space Station. Int. J. Astrobiol. 14, 3–16.

Article  ADS  Google Scholar 

Baranov I.M., Novikova N.D., Polikarpov N.A., Sychev V.N., Levinskikh M.A., Alekseev V.R., Okuda T., Sugimoto M., Gusev O.A., Grigoriev A.I. 2009. Biorisk experiment: 13-month exposition of resting forms of organisms on the outer side of the Russian Segment of the International Space Station (preliminary results). Dokl. Biochem. Biophys. 426, 206–209.

Google Scholar 

de La Torre R., Sancho L.G., Horneck G., de los Ríos A., Wierzchos J., Olsson-Francis K., Cockell C.S., Rettberg P., Berger T., de Vera J.P.P., Ott S., Frías J.M., Melendi P.G., Lucas M.M., Reina M., Pintado A., Demets R. 2010. Survival of lichens and bacteria exposed to outer space conditions—results of the Lithopanspermia experiments. Icarus. 208 (2), 735–748.

Article  ADS  CAS  Google Scholar 

Ott E., Kawaguchi Y., Kölbl D., Rabbow E., Rettberg P., Mora M., Moissl-Eichinger C., Weckwerth W., Yamagishi A., Milojevic T. 2020. Molecular repertoire of Deinococcus radiodurans after 1 year of exposure outside the International Space Station within the Tanpopo mission. Microbiome. 8 (1), 150.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nicholson W.L., Moeller R., Horneck G. 2012. Transcriptomic responses of germinating Bacillus subtilis spores exposed to 1.5 years of space and simulated martian conditions on the EXPOSE-E experiment PR-OTECT. Astrobiology. 12 (5), 469–486.

Article  ADS  CAS  PubMed  Google Scholar 

Vaishampayan P.A., Rabbow E., Horneck G., Venkateswaran K.J. 2012. Survival of Bacillus pumilus spores for a prolonged period of time in real space conditions. Astrobiology. 12 (5), 487–497.

Article  ADS  CAS  PubMed  Google Scholar 

Mastroleo F., Van Houdt R., Leroy B., Benotmane M.A., Janssen A., Mergeay M., Vanhavere F., Hendrickx L., Wattiez R., Leys N. 2009. Experimental design and environmental parameters affect Rhodospirillum rubrum S1H response to space flight. ISME J. 3 (12), 1402–1419.

Article  CAS  PubMed  Google Scholar 

Wilson J.W., Ott C.M., Honer zu Bentrup K., Ramamurthy R., Quick L., Porwollik S., Cheng P., McClelland M., Tsaprailis G., Radabaugh T., Hunt A., Fernandez D., Richter E., Shah M., Kilcoyne M., Joshi L., Nelman-Gonzalez M., Hing S., Parra M., Dumars P., Norwood K., Bober R., Devich, J. Ruggles A., Goulart C., Rupert M., Stodieck L., Stafford P., Catella L., Schurr M.J., Buchanan K., Morici L., McCracken J., Allen P., Baker-Coleman C., Hammond T., Vogel J., Nelson R., Pierson D.L., Stefanyshyn-Piper H.M., Nickerson C.A. 2007. Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq. Proc. Natl. Acad. Sci. USA. 104 (41), 16299–16304.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Klaus D.M., Howard H.N. 2006. Antibiotic efficacy and microbial virulence during space flight. Trends Biotechnol. 24, 131–136.

Article  CAS  PubMed  Google Scholar 

Su L., Chang D., Liu C. 2013. The development of space microbiology in the future: The value and significance of space microbiology research. Future Microbiol. 8, 5–8.

Article  PubMed  Google Scholar 

Oshurkova V.I., Deshevaya E.A., Suzina N.E., Shubralova E.V., Shcherbakova V.A. 2021. Methanogenic archaea in space conditions. Aerospace Environ. Med. 55 (1), 63‒69.

Article  Google Scholar 

Deshevaya E.A., Shubralova E.V., Fialkina S.V., Guridov A.A., Novikova N.D., Tsygankov O.S., Lianko P.S., Orlov O.I., Morzunov S.P., Rizvanov A.A., Nikolaeva I.V. 2020. Microbiological investigation of the space dust collected from the external surfaces of the international space station. BioNanoScience. 10, 81–88.

Article  Google Scholar 

MagocT., Salzberg S. 2011. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 27 (21), 2957–2963.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aziz R.K., Bartels D., Best A.A., DeJongh M., Disz T., Edwards R.A., Formsma K., Gerdes S., Glass E.M., Kubal M., Meyer F., Olsen G.J., Olson R., Osterman A.L., Overbeek R.A., McNeil L.K., Paarmann D., Paczian T., Parrello B., Pusch G.D., Zagnitko O. 2008. The RAST Server: Rapid annotations using subsystems technology. BMC Genomics. 9, 75.

Article  PubMed  PubMed Central  Google Scholar 

Langdon W.B. 2015. Performance of genetic programming optimised Bowtie2 on genome comparison and analytic testing (GCAT) benchmarks. BioData Min. 8, 1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bankevich A., Nurk S., Antipov D., Gurevich A.A., Dvorkin M., Kulikov A.S., Lesin V.M., Nikolenko S.I., Pham S., Prjibelski A.D., Pyshkin A.V., Sirotkin A.V., Vyahhi N., Tesler G., Alekseyev M.A., Pevzner P.A. 2012. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19 (5), 455–477.

Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

Liang Q., Liu C., Xu R., Song M., Zhou Z., Li H., Dai W., Yang M., Yu Y., Chen H. 2021. fIDBAC: A platform for fast bacterial genome identification and typing. Front. Microbiol. 18, 723577.

Article  Google Scholar 

Saitou N., Nei M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.

CAS  PubMed  Google Scholar 

Tamura K., Stecher G., Kumar S. 2021. MEGA 11: Molecular Evolutionary Genetics Analysis version 11. Mol. Biol. Evol. 25, 3022–3027.

Article  Google Scholar 

Jolley K.A., Bliss C.M., Bennett J.S., Bratcher H.B., Brehony C., Colles F.M., Wimalarathna H., Harrison O.B., Sheppard S.K., Cody A.J., Maiden M.C.J. 2012. Ribosomal multilocus sequence typing: universal characterization of bacteria from domain to strain. Microbiology (Reading). 158 (Pt 4), 1005–1015.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chaumeil P.A., Mussig A.J., Hugenholtz P., Parks D.H. 2019. GTDB-Tk: A toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 36 (6), 1925–1927.

Article  PubMed  PubMed Central  Google Scholar 

Ruiz-GarcíaC.,BéjarV., Martínez-ChecaF., LlamasI., QuesadaE. 2005. Bacillus velezensis sp. nov., a surfactant-producing bacterium isolated from the river Vélez in Málaga, southern Spain. Int. J. Syst. Evol. Microbiol. 55 (Pt 1), 191–195.

Article  PubMed  Google Scholar 

Moeller R., Setlow P., Horneck G., Berger T., Reitz G., Rettberg P., Doherty A.J., Okayasu R., Nicholson W.L. 2008). Roles of the major, small, acid-soluble spore proteins and spore-specific and universal DNA repair mechanisms in resistance of Bacillus subtilis spores to ionizing radiation from X rays and high-energy charged-particle bombardment. J. Bacteriol. 190, 1134–1140.

Article  CAS  PubMed  Google Scholar 

Moeller R., Reitz G., Berger T., Okayasu R., Nicholson W.L., Horneck G. 2010. Astrobiological aspects of the mutagenesis of cosmic radiation on bacterial spores. Astrobiology. 10 (5), 509–521.

Article  ADS  CAS  PubMed  Google Scholar 

Hullo M.F., Moszer I., Danchin A., Martin-Verstraete I. 2001). CotA of Bacillus subtilis is a copper-dependent laccase. J. Bacteriol. 183, 5426–5430.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lenhart J.S., Schroeder J.W., Walsh B.W., Simmons L.A. 2012. DNA repair and genome maintenance in Bacillus subtilis. Microbiol. Mol. Biol. Rev. 76, 530–564.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rebeil R., Sun Y., Chooback L., Pedraza-Reyes M., Kinsland C., Begley T.P., Nicholson W.L. 1998). Spore photoproduct lyase from Bacillus subtilis spores is a novel iron-sulfur DNA repair enzyme which shares features with proteins such as class III anaerobic ribonucleotide reductases and pyruvate-formate lyases. J. Bacteriol. 180, 4879–4885.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu Y., Jeraldo P., Herbert W., McDonough S., Eckloff B., de Vera J.P., Cockell C., Leya T., Baqué M., Jen J., Schulze-Makuch D., Walther-Antonio M. 2022. Non-random genetic alterations in the cyanobacterium Nostoc sp. exposed to space conditions. Sci. Rep. 12 (1), 12580.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Setlow P. 2014. Spore resistance properties. Microbiol. Spectr. 2 (5), TBS-0003-2012.

Article  Google Scholar 

Chiang A.J., Mohan G.B.M., Singh N.K., Vaishampayan P.A., Kalkum M., Venkateswaran K. 2019. Alteration of proteomes in first-generation cultures of Bacillus pumilus spores exposed to outer space. mSystems. 4 (4), e00195-19. https://doi.org/10.1128/msystems.00195-19

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peyvan K., Karouia F., Cooper J.J., Chamberlain J., Suciu D., Slota M., Pohorille A. 2019. Gene expression measurement module (GEMM) for space application: design and validation. Life Sci. Space Res. 22, 55–67.

Article 

留言 (0)

沒有登入
gif