Restraint Stress-Induced Expression of Fos and Several Related Genes in the Hypothalamus of Hypertensive ISIAH Rats

Markel A.L. 1992. Development of a new strain of rats with inherited stress-induced arterial hypertension. Genetic Hypertension. 218, 405–407.

Google Scholar 

Markel A.L., Maslova L.N., Shishkina G.T., Bulygina V.V., Machanova N.A., Jacobson G.S. 1999. Developmental influences on blood pressure regulation in ISIAH rats. Dev. Hypertensive Phenotype: Basic Clin. Stud. 19, 493–526.

CAS  Google Scholar 

Markel A.L., Redina O.E., Gilinsky M.A., Dymshits G.M., Kalashnikova E.V., Khvorostova Y.V., Fedoseeva L.A., Jacobson G.S. 2007. Neuroendocrine profiling in inherited stress-induced arterial hypertension rat strain with stress-sensitive arterial hypertension. J. Endocrinol. 195, 439–450.

Article  CAS  PubMed  Google Scholar 

Redina O.E., Smolenskaya S.E., Polityko Y.K., Ershov N.I., Gilinsky M.A., Markel A.L. 2021. Hypothalamic norepinephrine concentration and heart mass in hypertensive ISIAH rats are associated with a genetic locus on chromosome 18. J. Pers. Med. 11 (2), 67.

Article  PubMed  PubMed Central  Google Scholar 

Klimov L.O., Ershov N.I., Efimov V.M., Markel A.L., Redina O.E. 2016. Genome-wide transcriptome analysis of hypothalamus in rats with inherited stress-induced arterial hypertension. BMC Genet. 17 (Suppl. 1), 13.

Article  PubMed  PubMed Central  Google Scholar 

Fedoseeva L.A., Klimov L.O., Ershov N.I., Alexandrovich Y.V., Efimov V.M., Markel A.L., Redina O.E. 2016. Molecular determinants of the adrenal gland functioning related to stress-sensitive hypertension in ISIAH rats. BMC Genomics. 17 (Suppl. 14), 989.

Article  PubMed  PubMed Central  Google Scholar 

Fedoseeva L.A., Ryazanova M.A., Ershov N.I., Markel A.L., Redina O.E. 2016. Comparative transcriptional profiling of renal cortex in rats with inherited stress-induced arterial hypertension and normotensive Wistar Albino Glaxo rats. BMC Genet. 17 (Suppl. 1), 12.

Article  PubMed  PubMed Central  Google Scholar 

Ryazanova M.A., Fedoseeva L.A., Ershov N.I., Efimov V.M., Markel A.L., Redina O.E. 2016. The gene-expression profile of renal medulla in ISIAH rats with inherited stress-induced arterial hypertension. BMC Genet. 17 (Suppl. 3), 151.

Article  PubMed  PubMed Central  Google Scholar 

Fedoseeva L.A., Klimov L.O., Ershov N.I., Efimov V.M., Markel A.L., Orlov Y.L., Redina O.E. 2019. The differences in brain stem transcriptional profiling in hypertensive ISIAH and normotensive WAG rats. BMC Genomics. 20, 297.

Article  PubMed  PubMed Central  Google Scholar 

Pylnik T.O., Pletneva L.S., Redina O.E., Smolenskaya S.E., Markel A.L., Ivanova L.N. 2011. The effect of emotional stress on the expression of the alpha-ENaC gene mRNA in the kidney of hypertensive ISIAH rats. Dokl. Biol. Sci. 439, 201–203.

Article  CAS  PubMed  Google Scholar 

Abramova T.O., Redina O.E., Smolenskaya S.E., Markel A.L. 2013. Elevated expression of the Ephx2 mRNA in the kidney of hypertensive ISIAH rats. Mol. Biol. (Moscow). 47, 821–826. https://doi.org/10.1134/S0026893313060022

Article  CAS  Google Scholar 

Abramova T.O., Smolenskaya S.E., Antonov E.V., Redina O.E., Markel A.L. 2016. Expression of catechol-O-methyltransferase (Comt), mineralocorticoid receptor (Mlr), and epithelial sodium channel (ENAC. genes in kidneys of hypertensive ISIAH rats at rest and during response to stress. Russ. J. Genet. 52, 180–187.

Article  CAS  Google Scholar 

Senba E., Ueyama T. 1997. Stress-induced expression of immediate early genes in the brain and peripheral organs of the rat. Neurosci. Res. 29, 183–207.

Article  CAS  PubMed  Google Scholar 

Girotti M., Weinberg M.S., Spencer R.L. 2007. Differential responses of hypothalamus-pituitary-adrenal axis immediate early genes to corticosterone and circadian drive. Endocrinology. 148, 2542–2552.

Article  CAS  PubMed  Google Scholar 

Mansi J.A., Rivest S., Drolet G. 1998. Effect of immobilization stress on transcriptional activity of inducible immediate-early genes, corticotropin-releasing factor, its type 1 receptor, and enkephalin in the hypothalamus of borderline hypertensive rats. J. Neurochem. 70, 1556–1566.

Article  CAS  PubMed  Google Scholar 

Kovacs K.J. 2008. Measurement of immediate-early gene activation—c-fos and beyond. J. Neuroendocrinol. 20, 665–672.

Article  CAS  PubMed  Google Scholar 

Guez-Barber D., Fanous S., Golden S.A., Schrama R., Koya E., Stern A.L., Bossert J.M., Harvey B.K., Picciotto M.R., Hope B.T. 2011. FACS identifies unique cocaine-induced gene regulation in selectively activated adult striatal neurons. J. Neurosci. 31, 4251–4259.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Okuno H. 2011. Regulation and function of immediate-early genes in the brain: Beyond neuronal activity markers. Neurosci. Res. 69, 175–186.

Article  CAS  PubMed  Google Scholar 

Melia K.R., Ryabinin A.E., Schroeder R., Bloom F.E., Wilson M.C. 1994. Induction and habituation of immediate early gene expression in rat brain by acute and repeated restraint stress. J. Neurosci. 14, 5929–5938.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Girotti M., Pace T.W., Gaylord R.I., Rubin B.A., Herman J.P., Spencer R.L. 2006. Habituation to repeated restraint stress is associated with lack of stress-induced c-fos expression in primary sensory processing areas of the rat brain. Neuroscience. 138, 1067–1081.

Article  CAS  PubMed  Google Scholar 

Foletta V.C., Segal D.H., Cohen D.R. 1998. Transcriptional regulation in the immune system: All roads lead to AP-1. J. Leukoc. Biol. 63, 139–152.

Article  CAS  PubMed  Google Scholar 

Aronheim A., Zandi E., Hennemann H., Elledge S.J., Karin M. 1997. Isolation of an AP-1 repressor by a novel method for detecting protein−protein interactions. Mol. Cell. Biol. 17, 3094–3102.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Katz S., Heinrich R., Aronheim A. 2001. The AP-1 repressor, JDP2, is a bona fide substrate for the c-Jun N-terminal kinase. FEBS Lett. 506, 196–200.

Article  CAS  PubMed  Google Scholar 

Odagiu L., Boulet S., Maurice De Sousa D., Daudelin J.F., Nicolas S., Labrecque N. 2020. Early programming of CD8(+). T cell response by the orphan nuclear receptor NR4A3. Proc. Natl. Acad. Sci. U. S. A. 117, 24392–24402.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baresic M., Salatino S., Kupr B., van Nimwegen E., Handschin C. 2014. Transcriptional network analysis in muscle reveals AP-1 as a partner of PGC-1alpha in the regulation of the hypoxic gene program. Mol. Cell. Biol. 34, 2996–3012.

Article  PubMed  PubMed Central  Google Scholar 

Wenz T. 2013. Regulation of mitochondrial biogenesis and PGC-1alpha under cellular stress. Mitochondrion. 13, 134–142.

Article  CAS  PubMed  Google Scholar 

McMeekin L.J., Joyce K.L., Jenkins L.M., Bohannon B.M., Patel K.D., Bohannon A.S., Patel A., Fox S.N., Simmons M.S., Day J.J., Kralli A., Crossman D.K., Cowell R.M. 2021. Estrogen-related receptor alpha (ERRalpha). is required for PGC-1alpha-dependent gene expression in the mouse brain. Neuroscience. 479, 70–90.

Article  CAS  PubMed  Google Scholar 

Hausl A.S., Brix L.M., Hartmann J., Pohlmann M.L., Lopez J.P., Menegaz D., Brivio E., Engelhardt C., Roeh S., Bajaj T., Rudolph L., Stoffel R., Hafner K., Goss H.M., Reul J., Deussing J.M., Eder M., Ressler K.J., Gassen N.C., Chen A., Schmidt M.V. 2021. The co-chaperone Fkbp5 shapes the acute stress response in the paraventricular nucleus of the hypothalamus of male mice. Mol. Psychiatry. 26, 3060–3076.

Article  PubMed  PubMed Central  Google Scholar 

Ginzinger D.G. 2002. Gene quantification using real-time quantitative PCR: An emerging technology hits the mainstream. Exp. Hematol. 30, 503–512.

Article  CAS  PubMed  Google Scholar 

Imaki T., Shibasaki T., Chikada N., Harada S., Naruse M., Demura H. 1996. Different expression of immediate-early genes in the rat paraventricular nucleus induced by stress: Relation to corticotropin-releasing factor gene transcription. Endocr. J. 43, 629–638.

Article  CAS  PubMed  Google Scholar 

Imaki T., Naruse M., Harada S., Chikada N., Nakajima K., Yoshimoto T., Demura H. 1998. Stress-induced changes of gene expression in the paraventricular nucleus are enhanced in spontaneously hypertensive rats. J. Neuroendocrinol. 10, 635–643.

Article  CAS  PubMed  Google Scholar 

Budzikowski A.S., Vahid-Ansari F., Leenen F.H. 1998. Chronic activation of brain areas by high-sodium diet in Dahl salt-sensitive rats. Am. J. Physiol. 274, H2046–2052.

CAS  PubMed  Google Scholar 

Rivest S., Laflamme N. 1995. Neuronal activity and neuropeptide gene transcription in the brains of immune-challenged rats. J. Neuroendocrinol. 7, 501–525.

Article  CAS  PubMed  Google Scholar 

Cullinan W.E., Herman J.P., Battaglia D.F., Akil H., Watson S.J. 1995. Pattern and time course of immediate early gene expression in rat brain following acute stress. Neuroscience. 64, 477–505.

Article  CAS  PubMed  Google Scholar 

Crane J.W., French K.R., Buller K.M. 2005. Patterns of neuronal activation in the rat brain and spinal cord in response to increasing durations of restraint stress. Stress. 8, 199–211.

Article 

留言 (0)

沒有登入
gif