Lovastatin Combination Therapy Increases the Survival and Proliferation of Rat Bone Marrow-Derived Mesenchymal Stem Cells Against the Inflammatory Activity of Lipopolysaccharide

Volkman, R., & Offen, D. (2017). Concise review: Mesenchymal stem cells in neurodegenerative diseases. Stem Cells, 35(8), 1867–1880.

Article  PubMed  Google Scholar 

Ghorbanian, M., Mirzaeian, L., Ghorbanian, M. T., & Rostami, F. (2023). Selegiline differentiates adult stem cells toward dopaminergic-like neurons: A comparison between two cellular niches of hippocampal neurogenesis. Cell Journal, 25(6), 383.

PubMed  PubMed Central  Google Scholar 

Hamedi, H., et al. (2023). Intravenous transplantation of adipose-derived mesenchymal stem cells promoted the production of dopaminergic neurons and improved spatial memory in a rat model of Parkinson’s disease. Cell Journal, 25(5), 317.

PubMed  PubMed Central  Google Scholar 

Spees, J. L., Lee, R. H., & Gregory, C. A. (2016). Mechanisms of mesenchymal stem/stromal cell function. Stem Cell Research & Therapy, 7(1), 1–13.

Article  Google Scholar 

Sarabadani, M., Tavana, S., Mirzaeian, L., & Fathi, R. (2021). Co‐culture with peritoneum mesothelial stem cells supports the in vitro growth of mouse ovarian follicles. Journal of Biomedical Materials Research Part A, 109(12), 2685–2694.

Article  CAS  PubMed  Google Scholar 

Chang, W., Song, B.-W., & Hwang, K.-C. (2013). Mesenchymal stem cell survival in infarcted myocardium: Adhesion and anti-death signals. In M. A. Hayat (Ed.) Stem cells and cancer stem cells, vol. 10 (pp. 35–43). Springer.

Wang, F. W. et al.(2013). Protective effect of melatonin on bone marrow mesenchymal stem cells against hydrogen peroxide-induced apoptosis in vitro. Journal of Cellular Biochemistry, 114(10), 2346–2355.

Article  CAS  PubMed  Google Scholar 

Pevsner-Fischer, M., et al. (2007). Toll-like receptors and their ligands control mesenchymal stem cell functions. Blood, 109(4), 1422–1432.

Article  CAS  PubMed  Google Scholar 

Wang, S., Li, X., & Zhao, R. C. (2016). Transcriptome analysis of long noncoding RNAs in Toll-like receptor 3-activated mesenchymal stem cells. Stem Cells International, 2016, 6205485.

Betancourt, A. M. (2012). New cell-based therapy paradigm: Induction of bone marrow-derived multipotent mesenchymal stromal cells into pro-inflammatory MSC1 and anti-inflammatory MSC2 phenotypes. In B. Weyand, M. Dominici, R. Hass, R. Jacobs, C. Kasper (Eds.), Mesenchymal stem cells-basics and clinical application II (pp. 163–197) Springer Berlin, Heidelberg.

Rostami, F., Oryan, S., Ahmadiani, A., & Dargahi, L. (2012). Morphine preconditioning protects against LPS-induced neuroinflammation and memory deficit. Journal of Molecular Neuroscience, 48(1), 22–34.

Article  CAS  PubMed  Google Scholar 

Qureshi, S. T., et al. (1999). Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4). The Journal of Experimental Medicine, 189(4), 615–625.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, Z.-J., et al. (2009). Lipopolysaccharides can protect mesenchymal stem cells (MSCs) from oxidative stress-induced apoptosis and enhance proliferation of MSCs via Toll-like receptor (TLR)-4 and PI3K/Akt. Cell Biology International, 33(6), 665–674.

Article  CAS  PubMed  Google Scholar 

Fakheri, F. et al. (2019). Lovastatin alters neurotrophin expression in rat hippocampus‑derived neural stem cells in vitro. Acta Neurobiologiae Experimentalis, 79, 413–420.

Article  PubMed  Google Scholar 

Ramezani, M., et al. (2023). Comparing the mesenchymal stem cells proliferation rate with different labeling assessments. The Nucleus, 66(1), 31–37.

Article  CAS  Google Scholar 

Ghorbanian, M. T., Haji-Ghasem-Kashani, M., Hossein-Pour, L., & Mirzaiyan, L. (2011). Expression of nestin and nerve growth factors in adipose-derived mesenchymal stem cells. Feyz Journals of Kashan University of Medical Sciences, 15(4), 322–330.

Li, J., et al. (2020). Mechanisms of the lipopolysaccharide‑induced inflammatory response in alveolar epithelial cell/macrophage co‑culture. Experimental and Therapeutic Medicine, 20(5), 1–1.

PubMed  PubMed Central  Google Scholar 

Taghi, G. M., et al. (2012). Characterization of in vitro cultured bone marrow and adipose tissue‐derived mesenchymal stem cells and their ability to express neurotrophic factors. Cell Biology International, 36(12), 1239–1249.

Article  CAS  PubMed  Google Scholar 

Bagheri, Y., et al. (2021). Comparative study of gavage and intraperitoneal administration of gamma-oryzanol in alleviation/attenuation in a rat animal model of renal ischemia/reperfusion-induced injury. Iranian Journal of Basic Medical Sciences, 24(2), 175.

PubMed  PubMed Central  Google Scholar 

Mirzaeiyan, L., et al. (1393). Examination of antioxidant enzymes andmatrix metalloproteinases in conditional medium of bone marrow mesenchymal stem cells and adipose-derived stem cells in vitro. Koomesh Journal, 15(3), 350–358.

Google Scholar 

Bahrehbar, K., Gholami, S., Nazari, Z., & Malakhond, M. K. (2022). Embryonic stem cells-derived mesenchymal stem cells do not differentiate into ovarian cells but improve ovarian function in POF mice. Biochemical and Biophysical Research Communications, 635, 92–98.

Article  CAS  PubMed  Google Scholar 

Mirzaeian, L., et al. (2023). In-vivo oogenesis of oogonial and mesenchymal stem cells seeded in transplanted ovarian extracellular matrix. Journal of Ovarian Research, 16(1), 1–17.

Article  Google Scholar 

Rasouliyan, F., et al. (2021). Preparation, physicochemical characterization, and anti-proliferative properties of Lawsone-loaded solid lipid nanoparticles. Chemistry and Physics of Lipids, 239, 105123.

Article  CAS  PubMed  Google Scholar 

Kong, D., et al. (2017). Synergistic effect of tanshinone IIA and mesenchymal stem cells on preventing learning and memory deficits via anti-apoptosis, attenuating tau phosphorylation and enhancing the activity of central cholinergic system in vascular dementia. Neuroscience Letters, 637, 175–181.

Article  CAS  PubMed  Google Scholar 

Zhang, Q., et al. (2017). Bone marrow stromal cells combined with sodium ferulate and n-butylidenephthalide promote the effect of therapeutic angiogenesis via advancing astrocyte-derived trophic factors after ischemic stroke. Cell Transplantation, 26(2), 229–242.

Article  PubMed  PubMed Central  Google Scholar 

Wajid, N., et al. (2013). Lovastatin protects chondrocytes derived from Wharton’s jelly of human cord against hydrogen-peroxide-induced in vitro injury. Cell and Tissue Research, 351(3), 433–443.

Article  CAS  PubMed  Google Scholar 

Kallapura, G., et al. (2014). Mechanisms involved in lipopolysaccharide derived ROS and RNS oxidative stress and septic shock. Journal of Microbiology Research and Reviews, 2(1), 6–11.

Google Scholar 

Altan, N., Dinçel, A. S., & Koca, C. (2006). Diabetes mellitus and oxidative stress. Türk Biyokimya Dergisi, 31, 51–56.

Zanin, V., et al. (2013). Lovastatin dose-dependently potentiates the pro-inflammatory activity of lipopolysaccharide both in vitro and in vivo. Journal of Cardiovascular Translational Research, 6, 981–988.

Article  PubMed  PubMed Central  Google Scholar 

He, X., et al. (2016). TLR4 activation promotes bone marrow MSC proliferation and osteogenic differentiation via Wnt3a and Wnt5a signaling. PLoS ONE, 11(3), e0149876.

Article  PubMed  PubMed Central  Google Scholar 

Herzmann, N., Salamon, A., Fiedler, T., & Peters, K. (2017). Lipopolysaccharide induces proliferation and osteogenic differentiation of adipose-derived mesenchymal stromal cells in vitro via TLR4 activation. Experimental Cell Research, 350(1), 115–122.

Article  CAS  PubMed  Google Scholar 

Eren, S., & Selami, D. (2020). Glutathione peroxidase in health and diseases. In B. Margarete Dulce (ed.), Glutathione system and oxidative stress in health and disease (Ch. 3). IntechOpen.

Cordle, A., & Landreth, G. (2005). 3-Hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors attenuate β-amyloid-induced microglial inflammatory responses. Journal of Neuroscience, 25(2), 299–307.

Article  CAS  PubMed  Google Scholar 

Haghighi, F., et al. (2018). bFGF-mediated pluripotency maintenance in human induced pluripotent stem cells is associated with NRAS-MAPK signaling. Cell Communication and Signaling, 16(1), 1–14.

Article  Google Scholar 

Zhang, Q., et al. (2020). The role and specific mechanism of OCT4 in cancer stem cells: A review. International Journal of Stem Cells, 13(3), 312–325.

Article  PubMed  PubMed Central  Google Scholar 

Komarova, E. A., et al. (2005). p53 is a suppressor of inflammatory response in mice. The FASEB Journal, 19(8), 1030–1032.

Article  CAS  PubMed  Google Scholar 

Lane, D., & Levine, A. (2010). p53 Research: The past thirty years and the next thirty years. Cold Spring Harbor Perspectives in Biology, 2(12), a000893.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, G., et al. (2009). p53 attenuates lipopolysaccharide-induced NF-κB activation and acute lung injury. The Journal of Immunology, 182(8), 5063–5071.

Article 

Comments (0)

No login
gif