Genome-Wide Analysis of the Risk Association for the Development of Paranoid Schizophrenia in Russians: Search for Genetic Markers in the 1q43 Chromosomal Region

Mehta, N., Jena, I., Ray, S., et al., Plasma homocysteine, serum vitamin B12 and folic acid status in newly detected schizophrenic patients of Eastern India, Biomedicine, 2023, vol. 43, no. 2, pp. 587–589. https://doi.org/10.51248/.v43i02.2370

Article  Google Scholar 

Purcell, S., Neale, B., Todd-Brown, K., et al., PLINK: a toolset for whole-genome association and population-based linkage analysis, Am. J. Hum. Genet., 2007, vol. 81, no. 3, pp. 559–575. https://doi.org/10.1086/519795

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gareeva, A.E., Genome-wide association study of the risk of schizophrenia in the Republic of Bashkortostan, Russ. J. Genet., 2023, vol. 59, no. 8, pp. 831–839. https://doi.org/10.1134/S1022795423080070

Article  CAS  Google Scholar 

Benjamini, Y., Drai, D., Elmer, G., et al., Controlling the false discovery rate in behavior genetics research, Behav. Brain Res., 2001, vol. 125, nos. 1–2, pp. 279–284. https://doi.org/10.1016/s0166-4328(01)00297-2

Article  CAS  PubMed  Google Scholar 

Yu, J., Xue, R., Wang, Q., et al., The effects of plasma homocysteine level on the risk of three major psychiatric disorders: a mendelian randomization study, Front. Psychiatry, 2022, vol. 13. https://doi.org/10.3389/fpsyt.2022.841429

Jia, R., Yuan, X., Zhang, X., et al., Oxidative stress impairs cognitive function by affecting hippocampal fimbria volume in drug-naive, first-episode schizophrenia, Front. Neurosci., 2023, vol. 17, p. 1153439. https://doi.org/10.3389/fnins.2023.1153439

Article  PubMed  PubMed Central  Google Scholar 

Hasnat, F., Dewan, Z.F., Misbahuddin, M., et al., Folic acid, vitamin B12 and homocysteine levels following olanzapine administration in schizophrenia patients, Bangabandhu Sheikh Mujib Med. Univ. J., 2018, vol. 11, no. 1, pp. 11–16. https://doi.org/10.3329/bsmmuj.v11i1.34950

Article  Google Scholar 

D’Souza, S.W. and Glazier, J.D., Homocysteine metabolism in pregnancy and developmental impacts, Front. Cell Dev. Biol., 2022, vol. 10, p. 802285. https://doi.org/10.3389/fcell.2022.802285

Article  PubMed  PubMed Central  Google Scholar 

Kempisty, B., Sikora, J., Lianeri, M., et al., MTHFD 1958G>A and MTR 2756A>G polymorphisms are associated with bipolar disorder and schizophrenia, Psychiatr. Genet., 2007, vol. 17, no. 3, pp. 177–181. https://doi.org/10.1097/YPG.0b013e328029826f

Article  PubMed  Google Scholar 

Roffman, J.L., Brohawn, D.G., Nitenson, A.Z., et al., Genetic variation throughout the folate metabolic pathway influences negative symptom severity in schizophrenia, Schizophr. Bull., 2013, vol. 39, no. 2, pp. 330–338. https://doi.org/10.1093/schbul/sbr150

Article  PubMed  Google Scholar 

Dahal, S., Longkumer, I., Bhattacharjee, D., and Devi, N.K., Association of CBS 844ins68, MTR A2756G and MTRR A66G gene polymorphisms with depression: a population-based study from North India, Gene Rep., 2023, vol. 30. https://doi.org/10.1016/j.genrep.2022.101714

Chatterjee, M., Saha, T., Maitra, S., et al., Folate system gene variant rs1801394 66A>G may have a causal role in Down syndrome in the Eastern Indian population, Int. J. Mol. Cell. Med., 2020, vol. 9, no. 3, pp. 215–224. https://doi.org/10.22088/IJMCM.BUMS.9.3.215

Article  CAS  PubMed  PubMed Central  Google Scholar 

Djurovic, S., Gustafsson, O., Mattingsdal, M., et al., A genome-wide association study of bipolar disorder in Norwegian individuals, followed by replication in Icelandic sample, J. Affect. Disord., 2010, vol. 126, nos. 1–2, pp. 312–316. https://doi.org/10.1016/j.jad.2010.04.007

Article  PubMed  Google Scholar 

Hamshere, M.L., Walters, J.T., Smith, R., et al., Genome-wide significant associations in schizophrenia to ITIH3/4, CACNA1C and SDCCAG8, and extensive replication of associations reported by the schizophrenia PGC, Mol. Psychiatry, 2013, vol. 6, pp. 708–712. https://doi.org/10.1038/mp.2012.67

Article  CAS  Google Scholar 

Ripke, S., O’Dushlaine, C., Chambert, K., et al., Genome-wide association analysis identifies 13 new risk loci for schizophrenia, Nat. Genet., 2013, vol. 45. no. 10, pp. 1150–1159. https://doi.org/10.1038/ng.2742

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bergen, S.E. and Petryshen, T.L., Genome-wide association studies of schizophrenia: does bigger lead to better results, Curr. Opin. Psychiatry, 2012, vol. 25, no. 2, pp. 76–82. https://doi.org/10.1097/YCO.0b013e32835035dd

Article  PubMed  PubMed Central  Google Scholar 

McCauley, J.L., Zuvich, R.L., Bradford, Y., et al., Follow-up examination of linkage and association to chromosome 1q43 in multiple sclerosis, Genes Immun., 2009, vol. 10, no. 7, pp. 624–630. https://doi.org/10.1038/gene.2009.53

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif