Adaptive Significance and Origin of Flavonoid Biosynthesis Genes in the Grain of Cultivated Cereals

Agati, G., Brunetti, C., Fini, A., et al., Are flavonoids effective antioxidants in plants? Twenty years of our investigation, Antioxidants, 2020, vol. 9, no. 11, p. 1098. https://doi.org/10.3390/antiox9111098

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sharma, P., Jha, A.B., Dubey, R.S., and Pessarakli, M., Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions, J. Bot., 2012, vol. 2012, p. 681. https://doi.org/10.1155/2012/217037

Article  CAS  Google Scholar 

Coe, E.H., Neuffer, M.G., and Hoisington, D.A., The genetics of corn, in Corn and Corn Improvement, Madison: American Society of Agronomy, 1988, pp. 81–259. https://doi.org/10.2134/agronmonogr18.3ed.c3

Book  Google Scholar 

Huang, H., Ullah, F., Zhou, D.X., et al., Mechanisms of ROS regulation of plant development and stress responses, Front. Plant Sci., 2019, vol. 10, pp. 440–478. https://doi.org/10.3389/fpls.2019.00800

Article  Google Scholar 

Yan, W., Li, J., Lin, X., et al., Changes in plant anthocyanin levels in response to abiotic stresses: a meta-analysis, Plant Biotechnol. Rep., 2022, vol. 16, no. 5, pp. 497–508. https://doi.org/10.1007/S11816-022-00777-7

Article  CAS  Google Scholar 

Paauw, M., Koes, R., and Quattrocchio, F.M., Alteration of flavonoid pigmentation patterns during domestication of food crops, J. Exp. Bot., 2019, vol. 70, no. 15, pp. 3719–3735. https://doi.org/10.1093/jxb/erz141

Article  CAS  PubMed  Google Scholar 

Li, G., Wang, L., Yang, J., et al., A high-quality genome assembly highlights rye genomic characteristics and agronomically important genes, Nat. Genet., 2021, vol. 53, no. 4, pp. 574–580. https://doi.org/10.1038/S41588-021-00808-Z

Article  Google Scholar 

Rabanus-Wallace, M.T., Hackauf, B., Mascher, M., et al., Chromosome-scale genome assembly provides insights into rye biology, evolution and agronomic potential, Nat. Genet., 2021, vol. 53, no. 4, pp. 564–573. https://doi.org/10.1038/s41588-021-00807-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Winkel-Shirley, B., Flavonoid biosynthesis: a colorful model for genetics, biochemistry, cell biology, and biotechnology, Plant Physiol., 2001, vol. 126, pp. 485–493. https://doi.org/10.1104/pp.126.2.485

Article  CAS  PubMed  PubMed Central  Google Scholar 

Davies, K.M., Albert, N.W., and Schwinn, K.E., From landing lights to mimicry: the molecular regulation of flower colouration and mechanisms for pigmentation patterning, Funct. Plant Biol., 2012, vol. 39, no. 8, pp. 619–638. https://doi.org/10.1071/FP12195

Article  CAS  PubMed  Google Scholar 

Pucker, B. and Selmar, D., Biochemistry and molecular basis of intracellular flavonoid transport in plants, Plants, 2022, vol. 11, no. 7, p. 963. https://doi.org/10.3390/plants11070963/S1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Buhrman, K., Aravena-Calvo, J., Ross Zaulich, C., et al., Anthocyanic vacuolar inclusions: from biosynthesis to storage and possible applications, Front. Chem., 2022, vol. 10. https://doi.org/10.3389/fchem.2022.913324

Petrussa, E., Braidot, E., Zancani, M., et al., Plant flavonoids–biosynthesis, transport and involvement in stress responses, Int. J. Mol. Sci., 2013, vol. 14, no. 7, pp. 14950–14973. https://doi.org/10.3390/ijms140714950

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mackon, E., Jeazet Dongho, Epse Mackon, G.C., Ma, Y., et al., Recent insights into anthocyanin pigmentation, synthesis, trafficking, and regulatory mechanisms in rice (Oryza sativa L.) caryopsis, Biomolecules, 2021, vol. 11, no. 3, p. 394. https://doi.org/10.3390/biom11030394

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu, Q., Xie, X., Xiang, G., et al., In silico analysis of a MRP transporter gene reveals its possible role in anthocyanins or flavonoids transport in Oryza sativa, Am. J. Plant Sci., 2013, vol. 4, pp. 555–560. https://doi.org/10.4236/ajps.2013.43072

Article  CAS  Google Scholar 

Li, T., Zhang, W., Yang, H., et al., Comparative transcriptome analysis reveals differentially expressed genes related to the tissue-specific accumulation of anthocyanins in pericarp and aleurone layer for maize, Sci. Rep., 2019, vol. 9, no. 1, p. 6023. https://doi.org/10.1038/s41598-018-37697-y

Article  ADS  CAS  Google Scholar 

Tan, X., Li, K., Wang, Z., et al., A review of plant vacuoles: formation, located proteins, and functions, Plants, 2019, vol. 8, no. 9. https://doi.org/10.3390/plants8090327

Zheng, Y., Zhang, H., Deng, X., et al., The relationship between vacuolation and initiation of PCD in rice (Oryza sativa) aleurone cells, Sci. Rep., 2017, vol. 7, no. 1. https://doi.org/10.1038/srep41245

Henry, R.J., Furtado, A., and Rangan, P., Pathways of photosynthesis in non-leaf tissues, Biology, 2020, vol. 9, no. 12. https://doi.org/10.3390/biology9120438

Legland, D., Le, T.D.Q., Alvarado, C., et al., New growth-related features of wheat grain pericarp revealed by synchrotron-based X-ray micro-tomography and 3D reconstruction, Plants, 2023, vol. 12, no. 5. https://doi.org/10.3390/plants12051038

Simkin, A.J., Faralli, M., Ramamoorthy, S., Lawson, T., et al., Photosynthesis in non-foliar tissues: implications for yield, Plant J., 2020, vol. 101, no. 4, pp. 1001–1015. https://doi.org/10.1111/tpj.14633

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kong, L.A., Xie, Y., Sun, M.Z., et al., Comparison of the photosynthetic characteristics in the pericarp and flag leaves during wheat (Triticum aestivum L.) caryopsis development, Photosynthetica, 2016, vol. 54, no. 1, pp. 40–46. https://doi.org/10.1007/S11099-015-0153-y

Article  CAS  Google Scholar 

Li, Y.B., Yan, M., Cui, D.Z., et al., Programmed degradation of pericarp cells in wheat grains depends on autophagy, Front. Genet., 2021, vol. 12. https://doi.org/10.3389/fgene.2021.784545

Grafi, G. and Singiri, J.R., Cereal husks: versatile roles in grain quality and seedling performance, Agronomy, 2022, vol. 12, no. 1. https://doi.org/10.3390/agronomy12010172

Karabourniotis, G., Liakopoulos, G., Nikolopoulos, D., and Bresta, P., Protective and defensive roles of non-glandular trichomes against multiple stresses: structure-function coordination, J. For. Res., 2020, vol. 31, no. 1, pp. 1–12. https://doi.org/10.1007/s11676-019-01034-4

Article  CAS  Google Scholar 

Walker, A.R., Davison, P.A., Bolognesi-Winfield, A.C., et al., The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein, Plant Cell, 1999, vol. 11, no. 7, pp. 1337–1349. https://doi.org/10.1105/tpc.11.7.1337

Article  CAS  PubMed  PubMed Central  Google Scholar 

Morohashi, K. and Grotewold, E., A systems approach reveals regulatory circuitry for Arabidopsis trichome initiation by the GL3 and GL1 selectors, PLoS Genet., 2009, vol. 5, no. 2. https://doi.org/10.1371/journal.pgen.1000396

Morohashi, K., Zhao, M., Yang, M., et al., Participation of the Arabidopsis bHLH factor GL3 in trichome initiation regulatory events, Plant Physiol., 2007, vol. 145, no. 3, pp. 736–746. https://doi.org/10.1104/pp.107.104521

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pesch, M., Schultheiß, I., Klopffleisch, K., et al., TRANSPARENT TESTA GLABRA1 and GLABRA1 compete for binding to GLABRA3 in Arabidopsis, Plant Physiol., 2015, vol. 168, no. 2, pp. 584–597. https://doi.org/10.1104/pp.15.00328

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khlestkina, E., The adaptive role of flavonoids: emphasis on cereals, Cereal Res. Commun., 2013, vol. 41, no. 2, pp. 185–198. https://doi.org/10.1556/crc.2013.0004

Article  CAS  Google Scholar 

Vaughan, S.P., Baker, J.M., Primavesi, L.F., et al., Proanthocyanidin biosynthesis in the developing wheat seed coat investigated by chemical and RNA-Seq analysis, Plant Direct., 2022, vol. 6, no. 10. https://doi.org/10.1002/pld3.453

Jende-Strid, B., Genetic control of flavonoid biosynthesis in barley, Hereditas, 1993, vol. 119, no. 2, pp. 187–204. https://doi.org/10.1111/j.1601-5223.1993.00187.x

Article  CAS  Google Scholar 

Zykin, P.A., Andreeva, E.A., Lykholay, A.N., et al., Anthocyanin composition and content in rye plants with different grain color, Molecules, 2018, vol. 23, no. 4, p. 948. https://doi.org/10.3390/molecules23040948

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dixon, R.A. and Sarnala, S., Proanthocyanidin biosynthesis–a matter of protection, Plant Physiol., 2020, vol. 184, no. 2, pp. 579–591. https://doi.org/10.1104/pp.20.00973

Article  CAS  PubMed  PubMed Central  Google Scholar 

Himi, E., Yamashita, Y., Haruyama, N., et al., Ant28 gene for proanthocyanidin synthesis encoding the R2R3-MYB domain protein (Hvmyb10) highly affects grain dormancy in barley, Euphytica, 2012, vol. 188, no. 1, pp. 141–151. https://doi.org/10.1007/S10681-011-0552-5

Article  CAS  Google Scholar 

Himi, E. and Taketa, S., Barley Ant17, encoding flavanone 3-hydroxylase (F3H), is a promising target locus for attaining anthocyanin/proanthocyanidin-free plants without pleiotropic reduction of grain dormancy, Genome, 2015, vol. 58, no. 1, pp. 43–53. https://doi.org/10.1139/gen-2014-0189

Article  CAS  PubMed  Google Scholar 

Shoeva, O.Yu., Strygina, K.V., and Khlestkina, E.K., Genes determining the synthesis of flavonoid and melanin pigments in barley, Vavilovskii Zh. Genet. Sel., 2018, vol. 22, no. 3, pp. 333–342. https://doi.org/10.18699/VJ18.369

Article  Google Scholar 

Flint-Garcia, S.A., Genetics and consequences of crop domestication, J. Agric. Food Chem., 2013, vol. 61, no. 35, pp. 8267–8276. https://doi.org/10.1021/jf305511d

Article  CAS  PubMed  Google Scholar 

Sun, M. and Corke, H., Population genetics of colonizing success of weedy rye in Northern California, Theor. Appl. Genet., 1992, vol. 83, no. 3, pp. 321–329. https://doi.org/10.1007/BF00224278

Article  CAS  PubMed  Google Scholar 

Xu, F., Tang, J., Wang, S., et al., Antagonistic control of seed dormancy in rice by two bHLH transcription factors, Nat. Genet., 2022, vol. 54, no. 12, pp. 1972–1982. https://doi.org/10.1038/s41588-022-01240-7

Article  CAS  PubMed  Google Scholar 

Skadhauge, B., Thomsen, K.K., and von Wettstein, D., The role of the barley testa layer and its flavonoid content in resistance to Fusarium infections, Hereditas, 1997, vol. 126, no. 2, pp. 147–160. https://doi.org/10.1111/J.1601-5223.1997.00147.X

留言 (0)

沒有登入
gif