Investigating the Effect of Silica Nanoparticles on MMP9, HAS2, ITGAX, and Additional Key Genes: Implications for Enhanced Wound Healing

Harish, V., Tewari, D., Gaur, M., et al., Review on nanoparticles and nanostructured materials: bioimaging, biosensing, drug delivery, tissue engineering, antimicrobial, and agro-food applications, Nanomaterials, 2022, vol. 12, no. 3. https://doi.org/10.3390/nano12030457

Liu, Q., Zhang, Y., Huang, J., et al., Mesoporous silica-coated silver nanoparticles as ciprofloxacin/siRNA carriers for accelerated infected wound healing, J. Nanobiotechnol., 2022, vol. 20, no. 1. https://doi.org/10.1186/s12951-022-01600-9

Bharti, C., Gulati, N., Nagaich, U., and Pal, A., Mesoporous silica nanoparticles in target drug delivery system: a review, Int. J. Pharm. Invest., 2015, vol. 5, no. 3. https://doi.org/10.4103/2230-973x.160844

Li, Z., Mu, Y., and Peng, C., Understanding the mechanisms of silica nanoparticles for nanomedicine, Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol., 2021, vol. 13, no. 1. https://doi.org/10.1002/wnan.1658

Prabha, S., Durgalakshmi, D., Rajendran, S., and Lichtfouse, E., Plant-derived silica nanoparticles and composites for biosensors, bioimaging, drug delivery and supercapacitors: a review, Environ. Chem. Lett., 2021, vol. 19, no. 2, pp. 1667–1691. https://doi.org/10.1007/s10311-020-01123-5

Article  CAS  PubMed  Google Scholar 

Li, J., Chen, J., and Kirsner, R., Pathophysiology of acute wound healing, Clin. Dermatol., 2007, vol. 25, no. 1, pp. 9–18. https://doi.org/10.1016/j.clindermatol.2006.09.007

Article  CAS  PubMed  Google Scholar 

Tyavambiza, C., Meyer, M., and Meyer, S., Cellular and molecular events of wound healing and the potential of silver based nanoformulations as wound healing agents, Bioengineering, 2022, vol. 9, no. 11. https://doi.org/10.3390/bioengineering9110712

Akbik, D., Ghadiri, M., Chrzanowski, W., and Rohanizadeh, R., Curcumin as a wound healing agent, Life Sci., 2014, vol. 116, no. 1, pp. 1–7. https://doi.org/10.1016/j.lfs.2014.08.016

Article  CAS  PubMed  Google Scholar 

Quignard, S., Coradin, T., Powell, J.J., and Jugdaohsingh, R., Silica nanoparticles as sources of silicic acid favoring wound healing in vitro, Colloids Surf. B, 2017, vol. 155, pp. 530–537. https://doi.org/10.1016/j.colsurfb.2017.04.049

Article  CAS  Google Scholar 

Turner, C.T., Hasanzadeh Kafshgari, M., and Melville, E., Delivery of flightless I siRNA from porous silicon nanoparticles improves wound healing in mice, ACS Biomater. Sci. Eng., 2016, vol. 2, no. 12, pp. 2339–2346. https://doi.org/10.1021/acsbiomaterials.6b00550

Article  CAS  PubMed  Google Scholar 

Pan, F., Giovannini, G., Zhang, S., et al., pH-responsive silica nanoparticles for the treatment of skin wound infections, Acta Biomater., 2022, vol. 145, pp. 172–184. https://doi.org/10.1016/j.actbio.2022.04.009

Article  CAS  PubMed  Google Scholar 

Kandhwal, M., Behl, T., Singh, S., et al., Role of matrix metalloproteinase in wound healing, Am. J. Transl. Res., 2022, vol. 14, no. 7, pp. 4391–4405.

CAS  PubMed  PubMed Central  Google Scholar 

Caley, M.P., Martins, V.L.C., and O’Toole, E.A., Metalloproteinases and wound healing, Adv. Wound Care, 2015, vol. 4, no. 4, pp. 225–234. https://doi.org/10.1089/wound.2014.0581

Article  Google Scholar 

Jakhu, H., Gill, G., and Singh, A., Role of integrins in wound repair and its periodontal implications, J. Oral Biol. Craniofacial Res., 2018, vol. 8, no. 2, pp. 122–125. https://doi.org/10.1016/j.jobcr.2018.01.002

Article  Google Scholar 

Koivisto, L., Heino, J., Häkkinen, L., and Larjava, H., Integrins in wound healing, Adv. Wound Care, 2014, vol. 3, no. 12, pp. 762–783. https://doi.org/10.1089/wound.2013.0436

Article  Google Scholar 

Frenkel, J.S., The role of hyaluronan in wound healing, Int. Wound J., 2014, vol. 11, no. 2, pp. 159–163. https://doi.org/10.1111/j.1742-481X.2012.01057.x

Article  PubMed  Google Scholar 

Bao, P., Kodra, A., and Tomic-Canic, M., The role of vascular endothelial growth factor in wound healing, J. Surg. Res., 2009, vol. 153, no. 2, pp. 347–358. https://doi.org/10.1016/j.jss.2008.04.023

Article  CAS  PubMed  Google Scholar 

Savari, R., Shafiei, M., Galehdari, H., and Kesmati, M., Expression of VEGF and TGF-β genes in skin wound healing process induced using phenytoin in male rats, Jundishapur J. Health Sci., 2017, vol. 11, no. 1. https://doi.org/10.5812/jjhs.86041

Deonarine, K., Panelli, M.C., and Stashower, M.E., Gene expression profiling of cutaneous wound healing, J. Transl. Med., 2007, vol. 5, no. 11. https://doi.org/10.1186/1479-5876-5-11

Rim, Y.A. and Ju, J.H., The role of fibrosis in osteoarthritis progression, Life, 2021, vol. 11, no. 1. https://doi.org/10.3390/life11010003

Su, W.G., Wang, P.L., and Dong, Q.Q., S100A8 accelerates wound healing by promoting adipose stem cell proliferation and suppressing inflammation, Regener. Ther., 2022, vol. 21, pp. 166–174. https://doi.org/10.1016/j.reth.2022.06.010

Article  CAS  Google Scholar 

Donato, R., Cannon, B.R., and Sorci, G., Functions of S100 proteins, Curr. Mol. Med., 2013, vol. 13, no. 1. https://doi.org/10.2174/156652413804486214

Kim, C.W., Yoon, Y., and Kim, M.Y., 12-O-tetradecanoylphorbol-13-acetate reduces activation of hepatic stellate cells by inhibiting the hippo pathway transcriptional coactivator YAP, Cells, 2023, vol. 12, no. 1. https://doi.org/10.3390/cells12010091

Grifone, R., Shao, M., Saquet, A., and Shi, D.L., RNA-binding protein Rbm24 as a multifaceted post-transcriptional regulator of embryonic lineage differentiation and cellular homeostasis, Cells, 2020, vol. 9, no. 8. https://doi.org/10.3390/cells9081891

Mebratu, Y. and Tesfaigzi, Y., How ERK1/2 activation controls cell proliferation and cell death: is subcellular localization the answer?, Cell Cycle, 2009, vol. 8, no. 8, pp. 1168–1175. https://doi.org/10.4161/cc.8.8.8147

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif