Identifying environmental factors affecting the microbial community composition on outdoor structural timber

Abarenkov K, Zirk A, Piirmann T, Pöhönen R, Ivanov F, Nilsson RH, Kõljalg U (2023) UNITE QIIME release for fungi. UNITE Community. https://doi.org/10.15156/BIO/2938079

Aitchison J (1983) Principal component analysis of compositional data. Biometrika 70:57–65. https://doi.org/10.1093/biomet/70.1.57

Article  MathSciNet  Google Scholar 

Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46. https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x

Article  Google Scholar 

Apprill A, McNally S, Parsons R, Weber L (2015) Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat Microb Ecol 75:129–137. https://doi.org/10.3354/ame01753

Article  Google Scholar 

Arantes V, Goodell B (2014) Current understanding of brown-rot fungal biodegradation mechanisms: a review. In: Nicholas DD, Goodell B, Schultz T (eds) Deterioration and protection of sustainable biomaterials, ACS Symp Ser 1158, Oxford University Press, pp 3–22

Arpaci SS, Tomak ED, Ermeydan MA, Yildirim I (2021) Natural weathering of sixteen wood species: changes on surface properties. Polymer Degrad Stabil 183:109415. https://doi.org/10.1016/j.polymdegradstab.2020.109415

Article  CAS  Google Scholar 

Badotti F, de Oliveira FS, Garcia CF, Vaz ABM, Fonseca PLC, Nahum LA, Oliveira G, Góes-Neto A (2017) Effectiveness of ITS and sub-regions as DNA barcode markers for the identification of Basidiomycota (fungi). BMC Microbiol 17:42. https://doi.org/10.1186/s12866-017-0958-x

Article  PubMed  PubMed Central  Google Scholar 

Baldrian P, Zrůstová P, Tláskal V, Davidová A, Merhautová V, Vrška T (2016) Fungi associated with decomposing deadwood in a natural beech-dominated forest. Fungal Ecol 23:109–122. https://doi.org/10.1016/j.funeco.2016.07.001

Article  Google Scholar 

Bässler C, Müller J, Dziock F, Brandl R (2010) Effects of resource availability and climate on the diversity of wood-decaying fungi. J Ecol 98:822–832. https://doi.org/10.1111/j.1365-2745.2010.01669.x

Article  Google Scholar 

Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x

Article  MathSciNet  Google Scholar 

Birkemoe T, Jacobsen RM, Sverdrup-Thygeson A, Biedermann PHW (2018) Insect-fungus interactions in dead wood systems. In: Ulyshen MD (ed) Saproxylic Insects: Diversity, Ecology and Conservation. Springer Cham, pp 377–427

Blanchette RA, Nilsson T, Daniel G, Abad A (1990) Biological degradation of wood. In: Rowell RM (ed) Archaeological wood. Properties, chemistry, and preservation : developed from a symposium sponsored by the Cellulose, Paper, and Textile Division at the 196th National Meeting of the American Chemical Society, Los Angeles, California, September 25-September 30, 1988. American Chemical Society, Washington DC, pp 141–174

Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J, Cope EK, Da Silva R, Diener C, Dorrestein PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang L, Kaehler BD, Kang KB, Keefe CR, Keim P, Kelley ST, Knights D, Koester I, Kosciolek T, Kreps J, Langille MGI, Lee J, Ley R, Liu Y-X, Loftfield E, Lozupone C, Maher M, Marotz C, Martin BD, McDonald D, McIver LJ, Melnik AV, Metcalf JL, Morgan SC, Morton JT, Naimey AT, Navas-Molina JA, Nothias LF, Orchanian SB, Pearson T, Peoples SL, Petras D, Preuss ML, Pruesse E, Rasmussen LB, Rivers A, Robeson MS, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song SJ, Spear JR, Swafford AD, Thompson LR, Torres PJ, Trinh P, Tripathi A, Turnbaugh PJ, Ul-Hasan S, van der Hooft JJJ, Vargas F, Vázquez-Baeza Y, Vogtmann E, von Hippel M, Walters W, Wan Y, Wang M, Warren J, Weber KC, Williamson CHD, Willis AD, Xu ZZ, Zaneveld JR, Zhang Y, Zhu Q, Knight R, Caporaso JG (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. https://doi.org/10.1038/s41587-019-0209-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bundesregierung (2021) Koalitionsvertrag 2021–2025: Mehr Fortschritt wagen Bündnis für Freiheit, Gerechtigkeit und Nachhaltigkeit. https: https://www.bundesregierung.de/breg-de/service/gesetzesvorhaben/koalitionsvertrag-2021-1990800

Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. https://doi.org/10.1038/nmeth.3869

Article  CAS  PubMed  PubMed Central  Google Scholar 

Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624. https://doi.org/10.1038/ismej.2012.8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clauset A, Newman MEJ, Moore C (2004) Finding community structure in very large networks. Phys Rev E Stat Nonlin Soft Matter Phys 70:66111. https://doi.org/10.1103/PhysRevE.70.066111

Article  ADS  CAS  Google Scholar 

de Boer W, Folman LB, Gunnewiek PJAK, Svensson T, Bastviken D, Oberg G, Del Rio JC, Boddy L (2010) Mechanism of antibacterial activity of the white-rot fungus Hypholoma fasciculare colonizing wood. Can J Microbiol 56:380–388. https://doi.org/10.1139/W10-023

Article  CAS  PubMed  Google Scholar 

Decock C, Stalpers JA (2006) Studies in Perenniporia: Polyporus unitus, Boletus medulla-panis, the nomenclature of Perenniporia, Poria and Physisporus, and a note on European Perenniporia with a resupinate basidiome. Taxon 55:759–778. https://doi.org/10.2307/25065650

Article  Google Scholar 

Doria E, Altobelli E, Girometta C, Nielsen E, Zhang T, Savino E (2014) Evaluation of lignocellulolytic activities of ten fungal species able to degrade poplar wood. Int Biodeter Biodegr 94:160–166. https://doi.org/10.1016/j.ibiod.2014.07.016

Article  CAS  Google Scholar 

Embacher J, Zeilinger S, Kirchmair M, Rodriguez-R LM, Neuhauser S (2023) Wood decay fungi and their bacterial interaction partners in the built environment—a systematic review on fungal bacteria interactions in dead wood and timber. Fungal Biol Rev 45:100305. https://doi.org/10.1016/j.fbr.2022.100305

Article  CAS  Google Scholar 

Englmeier J, Rieker D, Mitesser O, Benjamin C, Fricke U, Ganuza C, Haensel M, Kellner H, Lorz J, Redlich S, Riebl R, Rojas‐Botero S, Rummler T, Steffan‐Dewenter I, Stengel E, Tobisch C, Uhler J, Uphus L, Zhang J, Müller J, Bässler C (2023) Diversity and specialization responses to climate and land use differ between deadwood fungi and bacteria. Ecography 2023. https://doi.org/10.1111/ecog.06807

European Commission (2018) A sustainable bioeconomy for Europe: strengthening the connection between economy, society and the environment - Updated Bioeconomy Strategy

Fernandes AD, Macklaim JM, Linn TG, Reid G, Gloor GB (2013) ANOVA-like differential expression (ALDEx) analysis for mixed population RNA-Seq. PLoS ONE 8:e67019. https://doi.org/10.1371/journal.pone.0067019

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Fernandes AD, Reid JN, Macklaim JM, McMurrough TA, Edgell DR, Gloor GB (2014) Unifying the analysis of high-throughput sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis. Microbiome 2:15. https://doi.org/10.1186/2049-2618-2-15

Article  PubMed  PubMed Central  Google Scholar 

Fröhlich A, Ciach M (2020) Dead wood resources vary across different types of urban green spaces and depend on property prices. Landscape Urban Plan 197:103747. https://doi.org/10.1016/j.landurbplan.2020.103747

Article  Google Scholar 

Girometta C, Zeffiro A, Malagodi M, Savino E, Doria E, Nielsen E, Buttafava A, Dondi D (2017) Pretreatment of alfalfa stems by wood decay fungus Perenniporia meridionalis improves cellulose degradation and minimizes the use of chemicals. Cellulose 24:3803–3813. https://doi.org/10.1007/s10570-017-1395-6

Article  CAS  Google Scholar 

Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ (2017) Microbiome datasets are compositional: and this is not optional. Front Microbiol 8:2224. https://doi.org/10.3389/fmicb.2017.02224

Article  PubMed  PubMed Central  Google Scholar 

Goodell B, Qian Y, Jellison J, Richard M, Qi W (2002) Lignocellulose oxidation by low molecular weight metal-binding compounds isolated from wood degrading fungi: a comparison of brown rot and white rot systems and the potential application of chelator-mediated Fenton reactions. Prog Biotechnol 21:37–47

CAS  Google Scholar 

Goodell B, Winandy JE, Morrell JJ (2020) Fungal degradation of wood: emerging data, new insights and changing perceptions. Coatings 10:1210. https://doi.org/10.3390/coatings10121210

Article  CAS  Google Scholar 

Goodell B, Qian Y, Jellison J (2008) Fungal decay of wood: soft rot—brown rot—white rot. In: Schultz T, Militz H, Freeman MH, Goodell B, Nicholas DD, Development of commercial wood preservatives (eds) ACS Symp Ser American Chemical Society, Washington DC, pp 9–31

Gustavsson L, Pingoud K, Sathre R (2006) Carbon dioxide balance of wood substitution: comparing concrete- and wood-framed buildings. Mitig Adapt Strat Glob Change 11:667–691. https://doi.org/10.1007/s11027-006-7207-1

Article  Google Scholar 

Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, Nucleic Acids Symposium Series 41:95–98 

Haq IU, Hillmann B, Moran M, Willard S, Knights D, Fixen KR, Schilling JS (2022) Bacterial communities associated with wood rot fungi that use distinct decomposition mechanisms. ISME Commun 2:26–35

Article  PubMed  PubMed Central  Google Scholar 

Hoppe B, Krüger D, Kahl T, Arnstadt T, Buscot F, Bauhus J, Wubet T (2015) A pyrosequencing insight into sprawling bacterial diversity and community dynamics in decaying deadwood logs of Fagus sylvatica and Picea abies. Sci Rep 5:9456. https://doi.org/10.1038/srep09456

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Hoppe B, Purahong W, Wubet T, Kahl T, Bauhus J, Arnstadt T, Hofrichter M, Buscot F, Krüger D (2016) Linking molecular deadwood-inhabiting fungal diversity and community dynamics to ecosystem functions and processes in Central European forests. Fungal Divers 77:367–379. https://doi.org/10.1007/s13225-015-0341-x

Article  Google Scholar 

Huckfeldt T, Rehbein M (2012) Holzspielplätze. Planung, Konstruktion, Schäden, Instandhaltung, 1st edn. Beuth, Berlin, Wien, Zürich

Huckfeldt T, Schmidt O (2015) Hausfäule-und Bauholzpilze Diagnose und Sanierung (Dry rot and timber decaying fungi: diagnosis and reconstruction). Rudolf Müller Verlag, Köln

Ihrmark K, Bödeker ITM, Cruz-Martinez K, Friberg H, Kubartova A, Schenck J, Strid Y, Stenlid J, Brandström-Durling M, Clemmensen KE, Lindahl BD (2012) New primers to amplify the fungal ITS2 region—evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol Ecol 82:666–677. https://doi.org/10.1111/j.1574-6941.2012.01437.x

Article  CAS  PubMed  Google Scholar 

Johnston SR, Boddy L, Weightman AJ (2016) Bacteria in decomposing wood and their interactions with wood-decay fungi. FEMS Microbiol Ecol 92. https://doi.org/10.1093/femsec/fiw179

Johnston SR, Hiscox J, Savoury M, Boddy L, Weightman AJ (2019) Highly competitive fungi manipulate bacterial communities in decomposing beech wood (Fagus sylvatica). FEMS Microbiol Ecol 95 (2). https://doi.org/10.1093/femsec/fiy225

Kojima Y, Várnai A, Ishida T, Sunagawa N, Petrovic DM, Igarashi K, Jellison J, Goodell B, Alfredsen G, Westereng B, Eijsink VGH, Yoshida M (2016) A lytic polysaccharide monooxygenase with broad xyloglucan specificity from the brown-rot fungus Gloeophyllum trabeum and its action on cellulose-xyloglucan complexes. Appl Environ Microbiol 82:6557–6572. https://doi.org/10.1128/AEM.01768-16

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Kõljalg U, Nilsson HR, Schigel D, Tedersoo L, Larsson K-H, May TW, Taylor AFS, Jeppesen TS, Frøslev TG, Lindahl BD, Põldmaa K, Saar I, Suija A, Savchenko A, Yatsiuk I, Adojaan K, Ivanov F, Piirmann T, Pöhönen R, Zirk A, Abarenkov K (2020) The taxon hypothesis paradigm—on the unambiguous detection and communication of taxa. Microorganisms 8(12).

留言 (0)

沒有登入
gif