Roles of pH and phosphate in rare earth element biosorption with living acidophilic microalgae

Abiusi F, Trompetter E, Hoenink H, Wijffels RH, Janssen M (2021) Autotrophic and mixotrophic biomass production of the acidophilic Galdieria sulphuraria ACUF 64. Algal Res 60:102513. https://doi.org/10.1016/j.algal.2021.102513

Article  Google Scholar 

Aguilera A, Souza-Egipsy V, San Martín-Úriz P, Amils R (2008) Extracellular matrix assembly in extreme acidic eukaryotic biofilms and their possible implications in heavy metal adsorption. Aquat Toxicol 88:257–266. https://doi.org/10.1016/j.aquatox.2008.04.014

Article  CAS  PubMed  Google Scholar 

Ahlf W (1988) Recovery of metals from acid waste water by Cyanidium caldarium. Appl Microbiol Biotechnol 28:512–513. https://doi.org/10.1007/BF00268224

Article  CAS  Google Scholar 

Beltrami D, Deblonde GJ-P, Bélair S, Weigel V (2015) Recovery of yttrium and lanthanides from sulfate solutions with high concentration of iron and low rare earth content. Hydrometallurgy 157:356–362. https://doi.org/10.1016/j.hydromet.2015.07.015

Article  CAS  Google Scholar 

Deblonde GJ, Mattocks JA, Park DM, Reed DW, Cotruvo JA, Jiao Y (2020) Selective and efficient biomacromolecular extraction of rare-earth elements using lanmodulin. Inorg Chem 59:11855–11867. https://doi.org/10.1021/acs.inorgchem.0c01303

Article  CAS  PubMed  Google Scholar 

Dev S, Sachan A, Dehghani F, Ghosh T, Briggs BR, Aggarwal S (2020) Mechanisms of biological recovery of rare-earth elements from industrial and electronic wastes: a review. Chem Eng J 397. https://doi.org/10.1016/j.cej.2020.124596

Diep P, Mahadevan R, Yakunin AF (2018) Heavy metal removal by bioaccumulation using genetically engineered microorganisms. Front Bioeng Biotechnol 6:157. https://doi.org/10.3389/fbioe.2018.00157

Article  PubMed  PubMed Central  Google Scholar 

Dong Z, Mattocks JA, Deblonde GJ-P, Hu D, Jiao Y, Cotruvo JA Jr, Park DM (2021) Bridging hydrometallurgy and biochemistry: a protein-based process for recovery and separation of rare earth elements. ACS Cent Sci 7:1798–1808. https://doi.org/10.1021/acscentsci.1c00724

Article  CAS  PubMed  PubMed Central  Google Scholar 

Firsching FH, Brune SN (1991) Solubility products of the trivalent rare-earth phosphates. J Chem Eng Data 36:93–95. https://doi.org/10.1021/je00001a028

Article  CAS  Google Scholar 

Fischer CB, Körsten S, Rösken LM, Cappel F, Beresko C, Ankerhold G, Schönleber A, Geimer S, Ecker D, Wehner S (2019) Cyanobacterial promoted enrichment of rare earth elements europium, samarium and neodymium and intracellular europium particle formation. RSC Adv 9:32581–32593. https://doi.org/10.1039/c9ra06570a

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Freire-Nordi CS, Vieira AAH, Nascimento OR (2005) The metal binding capacity of Anabaena spiroides extracellular polysaccharide: an EPR study. Process Biochem 40:2215–2224. https://doi.org/10.1016/j.procbio.2004.09.003

Article  CAS  Google Scholar 

Fritz M, Körsten S, Chen X, Yang G, Lv Y, Liu M, Wehner S, Fischer CB (2022a) High-resolution particle size and shape analysis of the first Samarium nanoparticles biosynthesized from aqueous solutions via cyanobacteria Anabaena cylindrica. NanoImpact 26:100398. https://doi.org/10.1016/j.impact.2022.100398

Article  CAS  PubMed  Google Scholar 

Fritz M, Körsten S, Chen X, Yang G, Lv Y, Liu M, Wehner S, Fischer CB (2022b) Time-dependent size and shape evolution of gold and europium nanoparticles from a bioproducing microorganism, a cyanobacterium: a digitally supported high-resolution image analysis. Nanomaterials 13:130. https://doi.org/10.3390/nano13010130

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gupta NK, Gupta A, Ramteke P, Sahoo H, Sengupta A (2019) Biosorption-a green method for the preconcentration of rare earth elements (REEs) from waste solutions: a review. J Mol Liq 274:148–164. https://doi.org/10.1016/j.molliq.2018.10.134

Article  CAS  Google Scholar 

Horiike T, Kiyono H, Yamashita M (2016) Penidiella sp. strain T9 is an effective dysprosium accumulator, incorporating dysprosium as dysprosium phosphate compounds. Hydrometallurgy 166:260–265. https://doi.org/10.1016/j.hydromet.2016.07.014

Article  CAS  Google Scholar 

Iovinella M, Lombardo F, Ciniglia C, Palmieri M, di Cicco MR, Trifuoggi M, Race M, Manfredi C, Lubritto C, Fabbricino M, De Stefano M, Davis SJ (2022) Bioremoval of yttrium (III), cerium (III), europium (III), and terbium (III) from single and quaternary aqueous solutions using the extremophile Galdieria sulphuraria (Galdieriaceae, Rhodophyta). Plants 11:1376. https://doi.org/10.3390/plants11101376

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jasso-Chávez R, Campos-García ML, Vega-Segura A, Pichardo-Ramos G, Silva-Flores M, Santiago-Martínez MG, Feregrino-Mondragón RD, Sánchez-Thomas R, García-Contreras R, Torres-Márquez ME, Moreno-Sánchez R (2021) Microaerophilia enhances heavy metal biosorption and internal binding by polyphosphates in photosynthetic Euglena gracilis. Algal Res 58:102384. https://doi.org/10.1016/j.algal.2021.102384

Article  Google Scholar 

Johnson DB, Aguilera A (2016) The microbiology of extremely acidic environments. In: Yates MV, Nakatsu CH, Miller RV, Pillai SD (eds) Manual of Environmental Microbiology, 4th edn. ASM Press, Washington DC (ch 4.3.1)

Google Scholar 

Khatiwada B, Hasan MT, Sun A, Kamath KS, Mirzaei M, Sunna A, Nevalainen H (2020) Proteomic response of Euglena gracilis to heavy metal exposure – identification of key proteins involved in heavy metal tolerance and accumulation. Algal Res 45. https://doi.org/10.1016/j.algal.2019.101764

Kim E, Osseo-Asare K (2012) Aqueous stability of thorium and rare earth metals in monazite hydrometallurgy: Eh–pH diagrams for the systems Th–, Ce–, La–, Nd– (PO4)–(SO4)–H2O at 25°C. Hydrometallurgy 113–114:67–78. https://doi.org/10.1016/j.hydromet.2011.12.007

Article  CAS  Google Scholar 

Kim JY, Oh J-J, Jeon MS, Kim G-H, Choi Y-E (2019) Improvement of Euglena gracilis paramylon production through a cocultivation strategy with the indole-3-acetic acid-producing bacterium Vibrio natriegens. Appl Environ Microbiol 85:e01548-e1619. https://doi.org/10.1128/AEM.01548-19

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim JY, Kim KY, Kim SM, Choi Y-E (2022) Use of rare earth element (REE)-contaminated acidic water as Euglena gracilis growth stimulator: a strategy for bioremediation and simultaneous increase in biodiesel productivity. Chem Eng J 445:136814. https://doi.org/10.1016/j.cej.2022.136814

Article  CAS  Google Scholar 

Lafraie MA, Betz A (1985) Anaerobic fermentation in Cyanidium caldarium. Planta 163:38–42. https://doi.org/10.1007/BF00395895

Article  CAS  PubMed  Google Scholar 

Liu X, Byrne RH (1997) Rare earth and yttrium phosphate solubilities in aqueous solution. Geochim Cosmochim Acta 61:1625–1633. https://doi.org/10.1016/S0016-7037(97)00037-9

Article  ADS  CAS  Google Scholar 

Mandal P, Kretzschmar J, Drobot B (2022) Not just a background: pH buffers do interact with lanthanide ions—a Europium(III) case study. JBIC J Biol Inorg Chem 27:249–260. https://doi.org/10.1007/s00775-022-01930-x

Article  CAS  PubMed  Google Scholar 

Manfredi C, Amoruso AJ, Ciniglia C, Iovinella M, Palmieri M, Lubritto C, El Hassanin A, Davis SJ, Trifuoggi M (2023) Selective biosorption of lanthanides onto Galdieria sulphuraria. Chemosphere 317:137818. https://doi.org/10.1016/j.chemosphere.2023.137818

Article  CAS  PubMed  Google Scholar 

Mattocks JA, Cotruvo JA (2020) Biological, biomolecular, and bio-inspired strategies for detection, extraction, and separations of lanthanides and actinides. Chem Soc Rev 49:8315–8334. https://doi.org/10.1039/D0CS00653J

Article  CAS  PubMed  Google Scholar 

Minoda A, Sawada H, Suzuki S, Miyashita S, Inagaki K, Yamamoto T, Tsuzuki M (2015) Recovery of rare earth elements from the sulfothermophilic red alga Galdieria sulphuraria using aqueous acid. Appl Microbiol Biotechnol 99:1513–1519. https://doi.org/10.1007/s00253-014-6070-3

Article  CAS  PubMed  Google Scholar 

Minoda A, Miyashita S, Fujii S, Inagaki K, Takahashi Y (2022) Cell population behavior of the unicellular red alga Galdieria sulphuraria during precious metal biosorption. J Hazard Mater 432:128576. https://doi.org/10.1016/j.jhazmat.2022.128576

Article  CAS  PubMed  Google Scholar 

Naveed S, Li C, Lu X, Chen S, Yin B, Zhang C, Ge Y (2019) Microalgal extracellular polymeric substances and their interactions with metal(loid)s: a review. Crit Rev Environ Sci Technol 49:1769–1802. https://doi.org/10.1080/10643389.2019.1583052

Article  CAS  Google Scholar 

Nichols HW, Bold HC (1965) Trichosarcina polymorpha Gen. et Sp. Nov. J Phycol 1:34–38. https://doi.org/10.1111/j.1529-8817.1965.tb04552.x

Article  Google Scholar 

Opare EO, Struhs E, Mirkouei A (2021) A comparative state-of-technology review and future directions for rare earth element separation. Renew Sustain Energy Rev 143:110917. https://doi.org/10.1016/j.rser.2021.110917

Article  CAS  Google Scholar 

Pawar G, Ewing RC (2022) Recent advances in the global rare-earth supply chain. MRS Bull 47:244–249. https://doi.org/10.1557/s43577-022-00305-6

Article  ADS  Google Scholar 

Pinto J, Colónia J, Abdolvaseei A, Vale C, Henriques B, Pereira E (2023) Algal sorbents and prospects for their application in the sustainable recovery of rare earth elements from E-waste. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-023-27767-8

Article  Google Scholar 

Rasoulnia P, Barthen R, Lakaniemi A-M (2021) A critical review of bioleaching of rare earth elements: the mechanisms and effect of process parameters. Crit Rev Environ Sci Technol 51:378–427. https://doi.org/10.1080/10643389.2020.1727718

Article  CAS  Google Scholar 

Schönknecht G, Chen WH, Ternes CM, Barbier GG, Shrestha RP, Stanke M, Brautigam A, Baker BJ, Banfield JF, Garavito RM, Carr K, Wilkerson C, Rensing SA, Gagneul D, Dickenson NE, Oesterhelt C, Lercher MJ, Weber AP (2013) Gene transfer from bacteria and archaea facilitated evolution of an extremophilic eukaryote. Science 339:1207–1210. https://doi.org/10.1126/science.1231707

Article  ADS 

留言 (0)

沒有登入
gif