Assessment of renal congestion in a rat model with congestive heart failure using superb microvascular imaging

Damman K, van Deursen VM, Navis G, et al. Increased central venous pressure is associated with impaired renal function and mortality in a broad spectrum of patients with cardiovascular disease. J Am Coll Cardiol. 2009;53:582–8.

Article  PubMed  Google Scholar 

Mullens W, Abrahams Z, Francis GS, et al. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J Am Coll Cardiol. 2009;53:589–96.

Article  PubMed  PubMed Central  Google Scholar 

Firth JD, Raine AE, Ledingham JG. Raised venous pressure: A direct cause of renal sodium retention in oedema? Lancet. 1988;1:1033–5.

Article  CAS  PubMed  Google Scholar 

Yamamoto M, Seo Y, Iida N, et al. Prognostic impact of changes in intrarenal venous flow pattern in patients with heart failure. J Card Fail. 2021;27:20–8.

Article  PubMed  Google Scholar 

Iida N, Seo Y, Sai S, et al. Clinical Implications of Intrarenal Hemodynamic Evaluation by Doppler Ultrasonography in Heart Failure. J Am Coll Cardiol HF. 2016;4:674–82.

Google Scholar 

Chiba H, Seo Y, Sai S, et al. Renoprotective effects of tolvaptan in hypertensive heart failure rats depend on renal decongestion. Hypertens Res. 2019;42:319–28.

Article  CAS  PubMed  Google Scholar 

Nakatsukasa T, Ishizu T, Ouchi M, et al. Sodium Glucose Co-Transporter 2 Inhibitors Improve Renal Congestion and Left Ventricular Fibrosis in Rats with Hypertensive Heart Failure. Circulation J. 2022;86:2029–39.

Article  CAS  Google Scholar 

Cantisani V, David E, Ferrari D, et al. Color Doppler Ultrasound with Superb Microvascular Imaging Compared to Contrast-enhanced Ultrasound and Computed Tomography Angiography to Identify and Classify Endoleaks in Patients Undergoing EVAR. Ann Vasc Surg. 2017;40:136–45.

Article  PubMed  Google Scholar 

Lee DH, Lee JY, Han JK. Superb microvascular imaging technology for ultrasound examinations: Initial experiences for hepatic tumors. Eur J Radiol. 2016;85:2090–5.

Article  PubMed  Google Scholar 

Park AY, Seo BK, Cha SH, et al. An Innovative Ultrasound Technique for Evaluation of Tumor Vascularity in Breast Cancers: Superb Micro-Vascular Imaging. J Breast Cancer. 2016;19:210–3.

Article  PubMed  PubMed Central  Google Scholar 

Gao J, Thai A, Erpeldingc T. Comparison of superb microvascular imaging to conventional color Doppler ultrasonography in depicting renal cortical microvasculature. Clin Imaging. 2019;58:90–5.

Article  PubMed  Google Scholar 

Platt JF, Ellis JH, Rubin JM, et al. Intrarenal arterial Doppler sonography in patients with nonobstructive renal disease: correlation of resistive index with biopsy findings. AJR Am J Roentgenol. 1990;154:1223–7.

Article  CAS  PubMed  Google Scholar 

Isrevisiohimura E, Nishizawa Y, Kawagishi T, et al. Intrarenal hemodynamic abnormalities in diabetic nephropathy measured by duplex Doppler sonography. Kidney Int. 1997;51:1920–7.

Article  Google Scholar 

Komuro K, Seo Y, Yamamoto M, et al. Assessment of renal perfusion impairment in a rat model of acute renal congestion using contrast-enhanced ultrasonography. Heart Vessels. 2018;33:434–40.

Article  PubMed  Google Scholar 

Watanabe N, Matsumura M, Chen CJ, et al. Gray-scale liver enhancement with Sonazoid (NC100100), a novel ultrasound contrast agent; detection of hepatic tumors in a rabbit model. Biol Pharm Bull. 2003;26:1272–7.

Article  CAS  PubMed  Google Scholar 

Bankhead P, Loughrey MB, Fernández JA, et al. QuPath: Open source software for digital pathology image analysis. Sci Rep. 2017;7:16878.

Article  PubMed  PubMed Central  Google Scholar 

Bateman GA, Cuganesan R. Renal vein Doppler sonography of obstructive uropathy. AJR Am J Roentgenol. 2002;178:921–5.

Article  PubMed  Google Scholar 

Leithe ME, Margorien RD, Hermiller JB, et al. Relationship between central hemodynamics and regional blood flow in normal subjects and in patients with congestive heart failure. Circulation. 1984;69:57–64.

Article  CAS  PubMed  Google Scholar 

Kilcoyne MM, Schmidt DH, Cannon PJ. Intrarenal blood flow in congestive heart failure. Circulation. 1973;47:786–97.

Article  CAS  PubMed  Google Scholar 

Trueta J, Barclay AE, Franklin KJ, et al. Studies of the renal circulation. Bristol Med Chir J. 1948;65:16–8.

CAS  PubMed  PubMed Central  Google Scholar 

Brezis M, Rosen S, Silva P, et al. Renal ischemia: A new perspective. Kidney Int. 1984;26:375–83.

Article  CAS  PubMed  Google Scholar 

O’Connor PM, Kett MM, Anderson WP, et al. Renal medullary tissue oxygenation is dependent on both cortical and medullary blood flow. Am J Physiol Renal Physiol. 2006;290:F688–94.

Article  PubMed  Google Scholar 

Burnett JC Jr, Knox FG. Renal interstitial pressure and sodium excretion during renal vein constriction. Am J Physiol. 1980;38:F279–82.

Google Scholar 

Hillege HL, Girbes AR, de Kam PJ, et al. Renal function, neurohormonal activation, and survival in patients with chronic heart failure. Circulation. 2000;102:203–10.

Article  CAS  PubMed  Google Scholar 

Smilde TDJ, Hillege HL, Navis G, et al. Impaired renal function in patients with ischemic and nonischemic chronic heart failure: Association with neurohormonal activation and survival. Am Heart J. 2004;148:165–72.

Article  CAS  PubMed  Google Scholar 

Mori T, Ohsaki Y, Oba-Yabana I, et al. Diuretic usage for protection against end-organ damage in liver cirrhosis and heart failure. Hepatol Res. 2017;47:11–22.

Article  CAS  PubMed  Google Scholar 

Burnett JC Jr, Knox FG. Renal interstitial pressure and sodium excretion during renal vein congestion. Am J Physiol. 1980;238:279–82.

Google Scholar 

Winton FR. The influence of venous pressure on the isolated mammalian kidney. J Physiol. 1931;72:49–61.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shimada S, Hirose T, Takahashi C, et al. Pathophysiological and molecular mechanisms involved in renal congestion in a novel rat model. Sci Rep. 2018;8:16808.

Article  PubMed  PubMed Central  Google Scholar 

Komuro K, Shimazu K, Koizumi T, et al. Demonstration of improved renal congestion after heart failure treatment on renal perfusion imaging with contrast-enhanced ultrasonography. Circ Rep. 2019;1:593–600.

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif