Spindle Cell Tumors of the Sinonasal Tract: A Diagnostic Update with Focus on Ancillary Workup

WHO Classification of Tumours Editorial Board (2022) WHO classification of tumours. Lyon (France): International Agency for Research on Cancer; 2022. 5th edn [Available from: https://tumourclassification.iarc.who.int/chapters/52

Thompson LD, Miettinen M, Wenig BM (2003) Sinonasal-type hemangiopericytoma: a clinicopathologic and immunophenotypic analysis of 104 cases showing perivascular myoid differentiation. Am J Surg Pathol 27(6):737–749. https://doi.org/10.1097/00000478-200306000-00004

Article  PubMed  Google Scholar 

Sangoi AR, Bishop JA (2020) Variability of CD34 expression in sinonasal glomangiopericytoma: a potential diagnostic pitfall. Head Neck Pathol 14(2):459–64. https://doi.org/10.1007/s12105-019-01063-9

Article  PubMed  Google Scholar 

Haller F, Bieg M, Moskalev EA, Barthelmeß S, Geddert H, Boltze C, Diessl N, Braumandl K, Brors B, Iro H, Hartmann A, Wiemann S, Agaimy A (2015) Recurrent mutations within the amino-terminal region of β-catenin are probable key molecular driver events in sinonasal hemangiopericytoma. Am J Pathol 185(2):563–571. https://doi.org/10.1016/j.ajpath.2014.10.019

Article  CAS  PubMed  Google Scholar 

Suzuki Y, Ichihara S, Kawasaki T, Yanai H, Kitagawa S, Shimoyama Y, Nakamura S, Nakaguro M (2018) β-catenin (CTNNB1) mutation and LEF1 expression in sinonasal glomangiopericytoma (sinonasal-type hemangiopericytoma). Virchows Archiv 473(2):235–239. https://doi.org/10.1007/s00428-018-2370-9

Article  CAS  PubMed  Google Scholar 

Jo VY, Fletcher CDM (2017) Nuclear β-catenin expression is frequent in sinonasal hemangiopericytoma and its mimics. Head Neck Pathol 11(2):119–23. https://doi.org/10.1007/s12105-016-0737-2

Article  PubMed  Google Scholar 

Kakkar A, Rajeshwari M, Sakthivel P, Sharma MC, Sharma SC (2018) Biphenotypic sinonasal sarcoma: a series of six cases with evaluation of role of β-catenin immunohistochemistry in differential diagnosis. Ann Diagn Pathol 33:6–10. https://doi.org/10.1016/j.anndiagpath.2017.11.005

Article  PubMed  Google Scholar 

Abraham SC, Montgomery EA, Giardiello FM, Wu TT (2001) Frequent beta-catenin mutations in juvenile nasopharyngeal angiofibromas. Am J Pathol 158(3):1073–1078. https://doi.org/10.1016/s0002-9440(10)64054-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen S, Gallant S, Cunningham MJ, Robson CD, Church AJ, Perez-Atayde AR et al (2023) CTNNB1 and APC mutations in sinonasal myxoma: expanding the spectrum of tumors driven by WNT/β-catenin pathway. Am J Surg Pathol. https://doi.org/10.1097/pas.0000000000002112

Article  PubMed  PubMed Central  Google Scholar 

Odintsov I, Dong F, Guenette JP, Fritchie KJ, Jo VY, Fletcher CDM et al (2023) Infantile sinonasal myxoma is clinically and genetically distinct from other myxomas of the craniofacial bones and from desmoid fibromatosis. Am J Surg Pathol. https://doi.org/10.1097/pas.0000000000002119

Article  PubMed  Google Scholar 

Velez Torres JM, Mata DA, Briski LM, Green DC, Cloutier JM, Kerr DA et al (2023) Sinonasal myxoma: a distinct entity or a myxoid variant of desmoid fibromatosis? Mod Pathol 36(7):100189. https://doi.org/10.1016/j.modpat.2023.100189

Article  PubMed  Google Scholar 

Thompson LDR, Lau SK (2018) Sinonasal tract solitary fibrous tumor: a clinicopathologic study of six cases with a comprehensive review of the literature. Head Neck Pathol 12(4):471–480. https://doi.org/10.1007/s12105-017-0878-y

Article  PubMed  Google Scholar 

Smith SC, Gooding WE, Elkins M, Patel RM, Harms PW, McDaniel AS et al (2017) Solitary fibrous tumors of the head and neck: a multi-institutional clinicopathologic study. Am J Surg Pathol 41(12):1642–1656. https://doi.org/10.1097/pas.0000000000000940

Article  PubMed  PubMed Central  Google Scholar 

Suster DI, Mackinnon AC, Mejbel HA, Gross JM, Suster S (2023) Epithelioid and clear cell solitary fibrous tumors: clinicopathologic, immunohistochemical, and molecular genetic study of 13 cases. Am J Surg Pathol 47(2):259–269. https://doi.org/10.1097/pas.0000000000001983

Article  PubMed  Google Scholar 

Guillou L, Gebhard S, Coindre JM (2000) Orbital and extraorbital giant cell angiofibroma: a giant cell-rich variant of solitary fibrous tumor? Clinicopathologic and immunohistochemical analysis of a series in favor of a unifying concept. Am J Surg Pathol 24(7):971–979. https://doi.org/10.1097/00000478-200007000-00008

Article  CAS  PubMed  Google Scholar 

Mosquera JM, Fletcher CD (2009) Expanding the spectrum of malignant progression in solitary fibrous tumors: a study of 8 cases with a discrete anaplastic component–is this dedifferentiated SFT? Am J Surg Pathol 33(9):1314–1321. https://doi.org/10.1097/pas.0b013e3181a6cd33

Article  PubMed  Google Scholar 

Collini P, Negri T, Barisella M, Palassini E, Tarantino E, Pastorino U et al (2012) High-grade sarcomatous overgrowth in solitary fibrous tumors: a clinicopathologic study of 10 cases. Am J Surg Pathol 36(8):1202–1215. https://doi.org/10.1097/PAS.0b013e31825748f0

Article  PubMed  Google Scholar 

Lu C, Alex D, Benayed R, Rosenblum M, Hameed M (2018) Solitary fibrous tumor with neuroendocrine and squamous dedifferentiation: a potential diagnostic pitfall. Hum Pathol 77:175–180. https://doi.org/10.1016/j.humpath.2017.12.024

Article  CAS  PubMed  PubMed Central  Google Scholar 

Doyle LA, Vivero M, Fletcher CD, Mertens F, Hornick JL (2014) Nuclear expression of STAT6 distinguishes solitary fibrous tumor from histologic mimics. Mod Pathol 27(3):390–395. https://doi.org/10.1038/modpathol.2013.164

Article  CAS  PubMed  Google Scholar 

Dermawan JK, Rubin BP, Kilpatrick SE, Gjorgova Gjeorgjievski S, Fritchie KJ, Goldblum JR et al (2021) CD34-negative solitary fibrous tumor: a clinicopathologic study of 25 cases and comparison with their CD34-positive counterparts. Am J Surg Pathol 45(12):1616–1625. https://doi.org/10.1097/pas.0000000000001717

Article  PubMed  Google Scholar 

Dagrada GP, Spagnuolo RD, Mauro V, Tamborini E, Cesana L, Gronchi A et al (2015) Solitary fibrous tumors: loss of chimeric protein expression and genomic instability mark dedifferentiation. Mod Pathol 28(8):1074–1083. https://doi.org/10.1038/modpathol.2015.70

Article  CAS  PubMed  Google Scholar 

Doyle LA, Tao D, Mariño-Enríquez A (2014) STAT6 is amplified in a subset of dedifferentiated liposarcoma. Mod Pathol 27(9):1231–1237. https://doi.org/10.1038/modpathol.2013.247

Article  CAS  PubMed  Google Scholar 

Xu B, Chang K, Folpe AL, Kao YC, Wey SL, Huang HY et al (2020) Head and neck mesenchymal neoplasms with GLI1 gene alterations: a pathologic entity with distinct histologic features and potential for distant metastasis. Am J Surg Pathol 44(6):729–737. https://doi.org/10.1097/pas.0000000000001439

Article  PubMed  PubMed Central  Google Scholar 

Agaram NP, Zhang L, Sung YS, Singer S, Stevens T, Prieto-Granada CN et al (2019) GLI1-amplifications expand the spectrum of soft tissue neoplasms defined by GLI1 gene fusions. Mod Pathol 32(11):1617–1626. https://doi.org/10.1038/s41379-019-0293-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stevens TM, Rooper LM, Bacchi CE, Fernandes IL, Antonescu CR, Gagan J et al (2022) Teratocarcinosarcoma-Like and adamantinoma-like head and neck neoplasms harboring NAB2::STAT6: unusual variants of solitary fibrous tumor or novel tumor entities? Head Neck Pathol 16(3):746–754. https://doi.org/10.1007/s12105-022-01444-7

Article  PubMed  PubMed Central  Google Scholar 

Terry J, Saito T, Subramanian S, Ruttan C, Antonescu CR, Goldblum JR et al (2007) TLE1 as a diagnostic immunohistochemical marker for synovial sarcoma emerging from gene expression profiling studies. Am J Surg Pathol 31(2):240–246. https://doi.org/10.1097/01.pas.0000213330.71745.39

Article  PubMed  Google Scholar 

Pan H, Byers J, Yin H, Rytting H, Logan S, He M et al (2023) The utility of TLE1 and BCOR as immunohistochemical markers for angiomatoid fibrous histiocytoma. Int J Clin Exp Pathol 16(2):32–39

CAS  PubMed  PubMed Central  Google Scholar 

Rekhi B, Kosemehmetoglu K, Ergen FB, Vengurlekar V, Rumde R, Shetty O et al (2023) Spectrum of histopathological, immunohistochemical, molecular and radiological features in 12 Cases of BCOR::CCNB3-positive sarcomas with literature review. Int J Surg Pathol 31(7):1244–1264. https://doi.org/10.1177/10668969221143467

Article  CAS  PubMed  Google Scholar 

Baranov E, McBride MJ, Bellizzi AM, Ligon AH, Fletcher CDM, Kadoch C et al (2020) A novel SS18-SSX fusion-specific antibody for the diagnosis of synovial sarcoma. Am J Surg Pathol 44(7):922–933. https://doi.org/10.1097/pas.0000000000001447

Article  PubMed  PubMed Central  Google Scholar 

Zaborowski M, Vargas AC, Pulvers J, Clarkson A, de Guzman D, Sioson L et al (2020) When used together SS18-SSX fusion-specific and SSX C-terminus immunohistochemistry are highly specific and sensitive for the diagnosis of synovial sarcoma and can replace FISH or molecular testing in most cases. Histopathology 77(4):588–600. https://doi.org/10.1111/his.14190

Article  PubMed  Google Scholar 

Agaimy A, Baněčková M, De Almeida J, Dickson BC, Dimmler A, Hartmann W et al (2023) Recurrent EWSR1::COLCA2 fusions define a novel sarcoma with spindle/round cell morphology and strong predilection for the sinonasal tract. Am J Surg Pathol 47(3):361–369. https://doi.org/10.1097/pas.0000000000002000

Article  PubMed  Google Scholar 

Lanic MD, Guérin R, Wassef M, Durdilly P, Rainville V, Sater V et al (2023) Detection of salivary gland and sinonasal fusions by a next-generation sequencing based, ligation-dependent, multiplex RT-PCR assay. Histopathology. https://doi.org/10.1111/his.14971

Article  PubMed  Google Scholar 

Koshyk O, Dehner CA, van den Hout M, Vanden Bempt I, Sciot R, Huang HY et al (2023) EWSR1::POU2AF3(COLCA2) sarcoma: an aggressive, polyphenotypic sarcoma with a head and neck predilection. Mod Pathol. https://doi.org/10.1016/j.modpat.2023.100337

Article  PubMed 

留言 (0)

沒有登入
gif