3D porous structure imaging of membranes for medical devices using scanning probe microscopy and electron microscopy: from membrane science points of view

Hiyoshi T. Is there a limit to the spinning processes of dialysis membranes? (in Japanese). Jin to Touseki. 1996;96:26–30.

Google Scholar 

Nunes SP, Culfaz-Emecen PZ, Ramon GZ, Visser T, Koops GH, Jin W, Ulbricht M. Thinking the future of membranes: perspectives for advanced and new membrane materials and manufacturing processes. J Membr Sci. 2020;598:117761. https://doi.org/10.1016/j.memsci.2019.117761.

Article  CAS  Google Scholar 

Duy Nguyen BT, Nguyen Thi HY, Nguyen Thi BP, Kang D-K, Kim JF. The roles of membrane technology in artificial organs: current challenges and perspectives. Membranes. 2021;11:239. https://doi.org/10.3390/membranes11040239.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Fukuda M, Furuya T, Sadano K, Tokumine A, Mori T, Saomoto H, Sakai K. Electron microscopic confirmation of anisotropic pore characteristics for ECMO membranes theoretically validating the risk of SARS-CoV-2 permeation. Membranes. 2021;11:529. https://doi.org/10.3390/membranes11070529.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Sakai K, Fukuda M, Namekawa K. Advent and evolution of blood purification membranes and expectations for the future (in Japanese). J Jpn Soc Blood Purif Crit Care Surv. 2019;10:26–30.

Google Scholar 

Sakai K. Determination of pore diameter and pore diameter distribution: 2. Dialysis membranes. J Membr Sci. 1994;96:91–130.

Article  CAS  Google Scholar 

Pappenheimer JR, Renkin EM, Borrero LM. Filtration, diffusion and molecular sieving through peripheral capillary membranes. Am J Physiol. 1951;167:13–46.

Article  PubMed  CAS  Google Scholar 

Verniory A, Du Bois R, Decoodt P, Gassee JP, Lambert PP. Measurement of the permeability of biological membranes. Application to the glomerular wall. J Gen Physiol. 1973; 62:489–507.

Kedem O, Katchalsky A. Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochi Biophys Acta. 1958;27:229–46.

Article  CAS  Google Scholar 

Kedem O, Katchalsky A. A physical interpretation of the phenomenological coefficients of membrane permeability. J Gen Physiol. 1961;45:143–79.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Klein E, Holland F, Lebeouf A, et al. Transport and mechanical properties of hemodialysis hollow fibers. J Membr Sci. 1976;1:371–96.

Article  CAS  Google Scholar 

Klein E, Holland F, Eberle K. Comparison of experimental and calculated permeability and rejection coefficients for hemodialysis membranes. J Membr Sci. 1979;5:173–88.

Article  CAS  Google Scholar 

Sakai K, Takesawa S, Mimura R, Ohashi H. Determination of pore radius of hollow fiber dialysis membranes using tritium-labeled water. J Chem Eng Jpn. 1988;21:207–10. https://doi.org/10.1252/jcej.21.207.

Article  CAS  Google Scholar 

Roberge H, Moreau P, Couallier E, Abella P. Determination of the key structural factors affecting permeability and selectivity of PAN and PES polymeric filtration membranes using 3D FIB/ SEM. J Membr Sci. 2022;653:120530. https://doi.org/10.1016/j.memsci.2022.120530.

Article  CAS  Google Scholar 

Fournier RL. Chapter 6: Mass transfer in heterogeneous materials, Chapter 9: Extracorporeal devices. In: Fournier RL, editor. Basic transport phenomena in biomedical engineering. 4th ed. Boca Raton, FL: CRC Press; 2017. p. 289–347, p. 451–514.

Yasuda H, Lamaze CE, Ikenberry LD. Permeability of solutes through hydrated polymer membranes. Part I: diffusion of sodium chloride. Makromol Chem. 1968;118:19–35.

Article  CAS  Google Scholar 

Yasuda H, Lamaze CE. Permeability of solutes in homogeneous water-swollen polymer membranes. J Macromol Sci Phy. 1971;B5:111–34.

Article  Google Scholar 

Cohen MH, Turnbull D. Molecular transport in liquids and glasses. J Chem Phys. 1959;31:1164–9.

Article  ADS  CAS  Google Scholar 

Kanamori T, Sakai K, Fukuda M. Structural analysis of hemodialysis membranes by evaluating distribution volume of water contained in the membranes. J Colloid Interface Sci. 1995;171:361–5.

Article  ADS  CAS  Google Scholar 

Alqaheem Y, Alomair AA. Microscopy and spectroscopy techniques for characterization of polymeric membranes. Membranes. 2020;10:33. https://doi.org/10.3390/membranes10020033.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Dinelli F, Brucale M, Valle F, Ascoli C, Samorì B, Sartore M, Adami M, Galletti R, Prato S, Troian B, Albonetti C. Probing Italy: a scanning probe microscopy storyline. Micro. 2023;3:549–65. https://doi.org/10.3390/mico3020037.

Article  Google Scholar 

Ren H, Zhang X, Li Y, Zhang D, Huang F, Zhang Z. Preparation of cross-sectional membrane samples for scanning electron microscopy characterizations using a new frozen section technique. Membranes. 2023;13:634. https://doi.org/10.3390/membranes13070634.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kim JY, Lee HK, Kim SH. Surface structure and phase separation mechanism of polysulfone membranes by atomic force microscopy. J Membr Sci. 1999;163:159–66.

Article  CAS  Google Scholar 

Hayama M, Kohori F, Sakai K. AFM observation of small surface pores of hollow fiber dialysis membrane using highly sharpened probe. J Membr Sci. 2002;197:243–9.

Article  CAS  Google Scholar 

Yamazaki K, Matsuda M, Yamamoto K, Yakushiji T, Sakai K. Internal and surface structure characterization of cellulose triacetate hollow fiber dialysis membranes. J Membr Sci. 2011;368:34–40. https://doi.org/10.1016/j.memsci.2010.11.008.

Article  CAS  Google Scholar 

Barzin J, Feng C, Khulbe KC, Matsuura T, Madaeni SS, Mirzadeh H. Characterization of polyethersulfone hemodialysis membrane by ultrafiltration and atomic force microscopy. J Membr Sci. 2004;237:77–85.

Article  CAS  Google Scholar 

Yamamoto K, Matsuda M, Hayama M, Yakushiji T, Fukuda M, Miyasaka T, Sakai K. Evaluation of asymmetrical structure dialysis membrane by tortuous capillary pore diffusion model. J Membr Sci. 2007;287:88–93. https://doi.org/10.1016/j.memsci.2006.10.018.

Article  CAS  Google Scholar 

Fukuda M, Saomoto H, Mori T, Yoshimoto H, Kusumi R, Sakai K. Impact of three-dimensional tortuous pore structure on polyethersulfone membrane morphology and mass transfer properties from a manufacturing perspective. J Artif Organs. 2020;23:171–9. https://doi.org/10.1007/s10047-019-01144-0.

Article  PubMed  CAS  Google Scholar 

Aoyagi S, Hayama M, Hasegawa U, Sakai K, Tozu M, Hoshi T, Kudo M. Estimation of protein adsorption on dialysis membrane by means of TOF-SIMS imaging. J Membr Sci. 2004;236:91–9. https://doi.org/10.1016/j.memsci.2004.02.010.

Article  CAS  Google Scholar 

Koga S, Yakushiji T, Matsuda M, Yamamoto K, Sakai K. Functional-group analysis of polyvinylpyrrolidone on the inner surface of hollow-fiber dialysis membranes, by near-field infrared microspectroscopy. J Membr Sci. 2010;355:208–13. https://doi.org/10.1016/j.memsci.2010.03.032.

Article  CAS  Google Scholar 

Yamazaki K, Yakushiji T, Sakai K. Nanoscale analysis of hydrophilicity–hydrophobicity distribution on inner surfaces of wet dialysis membranes by atomic force microscopy. J Membr Sci. 2012;396:38–42. https://doi.org/10.1016/j.memsci.2011.12.016.

Article  CAS  Google Scholar 

Said N, Lau WJ, Ho Y-C, Lim SK, Abidin MNZ, Ismail AF. A review of commercial developments and recent laboratory research of dialyzers and membranes for hemodialysis application. Membranes. 2021;11:767. https://doi.org/10.3390/membranes11100767.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Tang Y-S, Tsai Y-C, Chen T-W, Li S-Y. Artificial kidney engineering: the development of dialysis membranes for blood purification. Membranes. 2022;12:177. https://doi.org/10.3390/membranes12020177.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ter Beek OEM, Pavlenko D, Stamatialis D. Hollow fiber membranes for long-term hemodialysis based on polyethersulfone-SlipSkin™ polymer blends. J Membr Sci. 2020;604:118068. https://doi.org/10.1016/j.memsci.2020.118068.

Article  CAS  Google Scholar 

Ignacz G, Szekely G. Deep learning meets quantitative structure–activity relationship (QSAR) for leveraging structure-based prediction of solute rejection in organic solvent nanofiltration. J Membr Sci. 2022;646:120268. https://doi.org/10.1016/j.memsci.2022.120268.

Article  CAS  Google Scholar 

Liyanage T, Ninomiya T, Jha V, Neal B, Patrice HM, Okpechi I, Zhao Mh, Lv J, Garg AX, Knight J, Rodgers A, Gallagher M, Kotwal S, Cass A, Perkovicet V. Worldwide access to treatment for end-stage kidney disease: a systematic review. Lancet. 2015;385:1975–82.

Article  PubMed  Google Scholar 

Fukuda M. Evolutions of extracorporeal membrane oxygenator (ECMO): perspectives for advanced hollow fiber membrane. J Artif Organs. 2023. https://doi.org/10.1007/s10047-023-01389-w

Mori K, Fukasawa H, Hasegawa H, Monzen T, Seida Y, Takahashi A, Tsuji T, Suma K, Tanishita K. Development and in vitro evaluation of microporous hollow fiber (in Japanese). Jpn J Artif Organs. 1979;8:602–5.

Google Scholar 

Suma K, Tsuji T, Takeuchi Y, Inoue K, Shiroma K, Yoshikawa T, Narumi J. Clinical performance of microporous polypropylene hollow-fiber oxygenator. Ann Thorac Surg. 1981;32:558–62.

Article  PubMed  CAS  Google Scholar 

Terumo Corporation. https://www.terumo.co.jp/technology/stories/02. Accessed 1 Sept 2023.

Masuda T, Kawasaki M, Okano Y, Higashimaru T. Polymerization of metal catalysts: monomer structure, reactivity, and polymer properties. Polym J. 1982;14:371–7.

Article  CAS 

留言 (0)

沒有登入
gif