Advanced roll porous scaffold 3D bioprinting technology

Chen EP, Toksoy Z, Davis BA, Geibel JP. 3D bioprinting of vascularized tissues for in vitro and in vivo applications. Front Bioeng Biotechnol. 2021. https://doi.org/10.3389/fbioe.2021.664188.

Article  PubMed  PubMed Central  Google Scholar 

Das S, Gordián-Vélez WJ, Ledebur HC, Mourkioti F, Rompolas P, Chen HI, Serruya MD, Cullen DK. Innervation: the missing link for biofabricated tissues and organs. NPJ Regen Med. 2020;5:11.https://doi.org/10.1038/s41536-020-0096-1

Article  PubMed  PubMed Central  Google Scholar 

Freeman S, Ramos R, Chando PA, Zhou L, Reeser K, Jin S, Soman P, Ye K. A bioink blend for rotary 3D bioprinting tissue engineered small-diameter vascular constructs. Acta Biomater. 2019;95:152–64. https://doi.org/10.1016/j.actbio.2019.06.052.

Article  CAS  PubMed  Google Scholar 

Gao G, Park JY, Kim BS, et al. Coaxial cell printing of freestanding, perfusable, and functional in vitro vascular models for recapitulation of native vascular endothelium pathophysiology. Adv Healthc Mater. 2018;7: e1801102. https://doi.org/10.1002/adhm.201801102.

Article  CAS  PubMed  Google Scholar 

Jammalamadaka U, Tappa K. Recent advances in biomaterials for 3D printing and tissue engineering. J Funct Biomater. 2018;9:22. https://doi.org/10.3390/jfb9010022

Article  PubMed  PubMed Central  Google Scholar 

Kyle S, Jessop ZM, Al-Sabah A, Whitaker IS. ’printability’ of candidate biomaterials for extrusion based 3D printing: state-of-the-art. Adv Healthc Mater. 2017. https://doi.org/10.1002/adhm.201700264.

Article  PubMed  Google Scholar 

Leberfinger AN, Dinda S, Wu Y, Koduru SV, Ozbolat V, Ravnic DJ, Ozbolat IT. Bioprinting functional tissues. Acta Biomater. 2019;95:32–49. https://doi.org/10.1016/j.actbio.2019.01.009.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee A, Hudson A, Shiwarski D, et al. 3D bioprinting of collagen to rebuild components of the human heart. Science. 2019;365:482–7. https://doi.org/10.1126/science.aav9051.

Article  CAS  PubMed  Google Scholar 

Li J, Wu C, Chu PK, Gelinsky M. 3D printing of hydrogels: rational design strategies and emerging biomedical applications. Mater Sci Eng R Rep. 2020;140: 100543. https://doi.org/10.1016/j.mser.2020.100543.

Article  Google Scholar 

Yeo M, Sarkar A, Singh YP, et al. Synergistic coupling between 3D bioprinting and vascularization strategies. Biofabrication. 2024. https://doi.org/10.1088/1758-5090/ad0b3f.

Article  PubMed  Google Scholar 

Niklason LE, Lawson JH. Bioengineered human blood vessels. Science. 2020. https://doi.org/10.1126/science.aaw8682.

Article  PubMed  Google Scholar 

Sabzevari A, Rayat PH, Ansari M, et al. Progress in bioprinting technology for tissue regeneration. J Artif Organs. 2023;26:255–74. https://doi.org/10.1007/s10047-023-01394-z.

Article  PubMed  Google Scholar 

Salg GA, Blaeser A, Gerhardus JS, Hackert T, Kenngott HG. Vascularization in bioartificial parenchymal tissue: bioink and bioprinting strategies. Int J Mol Sci. 2022;23:8589.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shulunov VR. Enhanced roll porous scaffold 3D bioprinting technology. Int J Syst Innov. 2023;7:37–47. https://doi.org/10.6977/IJoSI.202312_7(8).0004.

Article  Google Scholar 

Shulunov VR. The program spiral converting parallel similar objects into a linear sequence [Programma spiral’nogo preobrazovaniya parallel’no podobnykh ob’ektov v linejnuyu posledovatel’nost’]. Certificate of state registration of computer programs No. 2016613199(RU), 2015 (in Russian). https://doi.org/10.13140/RG.2.2.17982.05446

Shulunov VR. Algorithm for converting 3D objects into rolls using spiral coordinate system. Virtual Phys Prototyp. 2016;11:91–7. https://doi.org/10.1080/17452759.2016.1175360.

Article  Google Scholar 

Shulunov VR. Linear spiral convertor for 3D objects into a ribbon [Linejno Spiral’nj Convertor slojov3D ob’ektov v lentu]. Certificate of State Registration of Computer Programs No. 2017614132(RU), 2016 (in Russian). https://doi.org/10.13140/RG.2.2.29313.25443/1

Shulunov VR. The Program Spiral Converting Solids of Revolution into a linear Sequence [Programma Spiral’nogo Preobrazovaniya Tel vraschenia v linejnuyu Posledovatel’nost’]. Certificate of State Registration of Computer Programs No. 2017614186(RU), 2016 (in Russian). https://doi.org/10.13140/RG.2.2.15570.35523/1

Shulunov VR. Transformation of 3D object into flat ribbon for RPS additive manufacturing technology. Rapid Prototyp J. 2017;23:273–9. https://doi.org/10.1108/RPJ-11-2015-0164.

Article  Google Scholar 

Shulunov VR. Comparison of algorithms for converting 3D objects into rolls, using a spiral coordinate system. Virtual Phys Prototyp. 2017;12:249–60. https://doi.org/10.1080/17452759.2017.1325132.

Article  Google Scholar 

Shulunov VR. A novel roll porous scaffold 3D bioprinting technology. Bioprinting. 2019;13: e00042. https://doi.org/10.1016/j.bprint.2019.e00042.

Article  Google Scholar 

Shulunov VR. Parallel slicer of STL files for roll powder sintering additive technology [Parallel’nyy slayser STL faylov dlya Roll Powder Sintering additivnoy tekhnologii]. Certificate of State Registration of Computer Programs No. 2020618781 (RU), 2020 (in Russian). https://doi.org/10.13140/RG.2.2.22176.35848

Shulunov VR, Esheeva IR. Accelerated algorithm for solids of revolution converting into ribbon by spiral coordinate system. Int J Intell Eng Syst. 2017;10:117–25. https://doi.org/10.22266/ijies2017.0630.13.

Article  Google Scholar 

Shulunov VR, Esheeva IR. A linear algorithm for conformal 3D-to-flatness coordinates conversion. Virtual Phys Prototyp. 2017;12:85–94. https://doi.org/10.1080/17452759.2016.1276820.

Article  Google Scholar 

Shulunov VR. advanced roll powder sintering additive manufacturing technology. Int J Interact Des Manuf. 2018. https://doi.org/10.1007/s12008-018-0475-7.

Article  Google Scholar 

Skylar-Scott MA, Uzel SG, Nam LL, et al. Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels. Sci Adv. 2019;5:eaaw459.

Article  Google Scholar 

Song KH, Highley CB, Rouff A, et al. Complex 3D-printed microchannels within cell-degradable hydrogels. Adv Funct Mater. 2018;28:1801331. https://doi.org/10.1002/adfm.201801331.

Article  CAS  Google Scholar 

Tongrui Z, Min N, Yijun L. Current advances and future perspectives of advanced polymer processing for bone and tissue engineering: morphological control and applications. Front Bioeng Biotechnol. 2022. https://doi.org/10.3389/fbioe.2022.895766.

Article  Google Scholar 

Zhang K, Yan S, Li G, Cui L, Yin J. Insitu birth of MSCs multicellular spheroids in poly (L-glutamic acid)/chitosan scaffold for hyaline-like cartilage regeneration. Biomaterials. 2015;71:24–34. https://doi.org/10.1016/j.biomaterials.2015.08.037.

Article  CAS  PubMed  Google Scholar 

Zhang YS, Yue K, Aleman J, MollazadehMoghaddam K, Bakht SM, Yang J, Jia W, Dell’Erba V, Assawes P, Shin SR, et al. 3D bioprinting for tissue and organ fabrication. Ann Biomed Eng. 2017;45:148–63.

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif