Chen EP, Toksoy Z, Davis BA, Geibel JP. 3D bioprinting of vascularized tissues for in vitro and in vivo applications. Front Bioeng Biotechnol. 2021. https://doi.org/10.3389/fbioe.2021.664188.
Article PubMed PubMed Central Google Scholar
Das S, Gordián-Vélez WJ, Ledebur HC, Mourkioti F, Rompolas P, Chen HI, Serruya MD, Cullen DK. Innervation: the missing link for biofabricated tissues and organs. NPJ Regen Med. 2020;5:11.https://doi.org/10.1038/s41536-020-0096-1
Article PubMed PubMed Central Google Scholar
Freeman S, Ramos R, Chando PA, Zhou L, Reeser K, Jin S, Soman P, Ye K. A bioink blend for rotary 3D bioprinting tissue engineered small-diameter vascular constructs. Acta Biomater. 2019;95:152–64. https://doi.org/10.1016/j.actbio.2019.06.052.
Article CAS PubMed Google Scholar
Gao G, Park JY, Kim BS, et al. Coaxial cell printing of freestanding, perfusable, and functional in vitro vascular models for recapitulation of native vascular endothelium pathophysiology. Adv Healthc Mater. 2018;7: e1801102. https://doi.org/10.1002/adhm.201801102.
Article CAS PubMed Google Scholar
Jammalamadaka U, Tappa K. Recent advances in biomaterials for 3D printing and tissue engineering. J Funct Biomater. 2018;9:22. https://doi.org/10.3390/jfb9010022
Article PubMed PubMed Central Google Scholar
Kyle S, Jessop ZM, Al-Sabah A, Whitaker IS. ’printability’ of candidate biomaterials for extrusion based 3D printing: state-of-the-art. Adv Healthc Mater. 2017. https://doi.org/10.1002/adhm.201700264.
Leberfinger AN, Dinda S, Wu Y, Koduru SV, Ozbolat V, Ravnic DJ, Ozbolat IT. Bioprinting functional tissues. Acta Biomater. 2019;95:32–49. https://doi.org/10.1016/j.actbio.2019.01.009.
Article CAS PubMed PubMed Central Google Scholar
Lee A, Hudson A, Shiwarski D, et al. 3D bioprinting of collagen to rebuild components of the human heart. Science. 2019;365:482–7. https://doi.org/10.1126/science.aav9051.
Article CAS PubMed Google Scholar
Li J, Wu C, Chu PK, Gelinsky M. 3D printing of hydrogels: rational design strategies and emerging biomedical applications. Mater Sci Eng R Rep. 2020;140: 100543. https://doi.org/10.1016/j.mser.2020.100543.
Yeo M, Sarkar A, Singh YP, et al. Synergistic coupling between 3D bioprinting and vascularization strategies. Biofabrication. 2024. https://doi.org/10.1088/1758-5090/ad0b3f.
Niklason LE, Lawson JH. Bioengineered human blood vessels. Science. 2020. https://doi.org/10.1126/science.aaw8682.
Sabzevari A, Rayat PH, Ansari M, et al. Progress in bioprinting technology for tissue regeneration. J Artif Organs. 2023;26:255–74. https://doi.org/10.1007/s10047-023-01394-z.
Salg GA, Blaeser A, Gerhardus JS, Hackert T, Kenngott HG. Vascularization in bioartificial parenchymal tissue: bioink and bioprinting strategies. Int J Mol Sci. 2022;23:8589.
Article CAS PubMed PubMed Central Google Scholar
Shulunov VR. Enhanced roll porous scaffold 3D bioprinting technology. Int J Syst Innov. 2023;7:37–47. https://doi.org/10.6977/IJoSI.202312_7(8).0004.
Shulunov VR. The program spiral converting parallel similar objects into a linear sequence [Programma spiral’nogo preobrazovaniya parallel’no podobnykh ob’ektov v linejnuyu posledovatel’nost’]. Certificate of state registration of computer programs No. 2016613199(RU), 2015 (in Russian). https://doi.org/10.13140/RG.2.2.17982.05446
Shulunov VR. Algorithm for converting 3D objects into rolls using spiral coordinate system. Virtual Phys Prototyp. 2016;11:91–7. https://doi.org/10.1080/17452759.2016.1175360.
Shulunov VR. Linear spiral convertor for 3D objects into a ribbon [Linejno Spiral’nj Convertor slojov3D ob’ektov v lentu]. Certificate of State Registration of Computer Programs No. 2017614132(RU), 2016 (in Russian). https://doi.org/10.13140/RG.2.2.29313.25443/1
Shulunov VR. The Program Spiral Converting Solids of Revolution into a linear Sequence [Programma Spiral’nogo Preobrazovaniya Tel vraschenia v linejnuyu Posledovatel’nost’]. Certificate of State Registration of Computer Programs No. 2017614186(RU), 2016 (in Russian). https://doi.org/10.13140/RG.2.2.15570.35523/1
Shulunov VR. Transformation of 3D object into flat ribbon for RPS additive manufacturing technology. Rapid Prototyp J. 2017;23:273–9. https://doi.org/10.1108/RPJ-11-2015-0164.
Shulunov VR. Comparison of algorithms for converting 3D objects into rolls, using a spiral coordinate system. Virtual Phys Prototyp. 2017;12:249–60. https://doi.org/10.1080/17452759.2017.1325132.
Shulunov VR. A novel roll porous scaffold 3D bioprinting technology. Bioprinting. 2019;13: e00042. https://doi.org/10.1016/j.bprint.2019.e00042.
Shulunov VR. Parallel slicer of STL files for roll powder sintering additive technology [Parallel’nyy slayser STL faylov dlya Roll Powder Sintering additivnoy tekhnologii]. Certificate of State Registration of Computer Programs No. 2020618781 (RU), 2020 (in Russian). https://doi.org/10.13140/RG.2.2.22176.35848
Shulunov VR, Esheeva IR. Accelerated algorithm for solids of revolution converting into ribbon by spiral coordinate system. Int J Intell Eng Syst. 2017;10:117–25. https://doi.org/10.22266/ijies2017.0630.13.
Shulunov VR, Esheeva IR. A linear algorithm for conformal 3D-to-flatness coordinates conversion. Virtual Phys Prototyp. 2017;12:85–94. https://doi.org/10.1080/17452759.2016.1276820.
Shulunov VR. advanced roll powder sintering additive manufacturing technology. Int J Interact Des Manuf. 2018. https://doi.org/10.1007/s12008-018-0475-7.
Skylar-Scott MA, Uzel SG, Nam LL, et al. Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels. Sci Adv. 2019;5:eaaw459.
Song KH, Highley CB, Rouff A, et al. Complex 3D-printed microchannels within cell-degradable hydrogels. Adv Funct Mater. 2018;28:1801331. https://doi.org/10.1002/adfm.201801331.
Tongrui Z, Min N, Yijun L. Current advances and future perspectives of advanced polymer processing for bone and tissue engineering: morphological control and applications. Front Bioeng Biotechnol. 2022. https://doi.org/10.3389/fbioe.2022.895766.
Zhang K, Yan S, Li G, Cui L, Yin J. Insitu birth of MSCs multicellular spheroids in poly (L-glutamic acid)/chitosan scaffold for hyaline-like cartilage regeneration. Biomaterials. 2015;71:24–34. https://doi.org/10.1016/j.biomaterials.2015.08.037.
Article CAS PubMed Google Scholar
Zhang YS, Yue K, Aleman J, MollazadehMoghaddam K, Bakht SM, Yang J, Jia W, Dell’Erba V, Assawes P, Shin SR, et al. 3D bioprinting for tissue and organ fabrication. Ann Biomed Eng. 2017;45:148–63.
Comments (0)