Precise genome-editing in human diseases: mechanisms, strategies and applications

Cox, D. B. T., Platt, R. J. & Zhang, F. Therapeutic genome editing: prospects and challenges. Nat. Med. 21, 121–131 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Craig Venter, J. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

Article  ADS  Google Scholar 

Metzker, M. L. Sequencing technologies - the next generation. Nat. Rev. Genet. 11, 31–46 (2010).

Article  CAS  PubMed  Google Scholar 

Valouev, A. et al. A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning. Genome Res. 18, 1051–1063 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380 (2005).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Doudna, J. A. The promise and challenge of therapeutic genome editing. Nature 578, 229–236 (2020).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Chen, P. J. & Liu, D. R. Prime editing for precise and highly versatile genome manipulation. Nat. Rev. Genet. 24, 161–177 (2023).

Article  CAS  PubMed  Google Scholar 

Jackson, D. A., Symons, R. H. & Berg, P. Biochemical method for inserting new genetic information into DNA of Simian Virus 40: circular SV40 DNA molecules containing lambda phage genes and the galactose operon of Escherichia coli. Proc. Natl. Acad. Sci. USA 69, 2904–2909 (1972).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Cohen, S. N., Chang, A. C. Y., Boyer, H. W. & Helling, R. B. Construction of biologically functional bacterial plasmids in vitro. Proc. Natl. Acad. Sci. USA 70, 3240–3244 (1973).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Berg, P. et al. Letter: potential biohazards of recombinant DNA molecules. Science 185, 303 (1974).

Article  ADS  CAS  PubMed  Google Scholar 

Yang, X. W., Model, P. & Heintz, N. Homologous recombination based modification in Escherichia coli and germline transmission in transgenic mice of a bacterial artificial chromosome. Nat. Biotechnol. 15, 859–865 (1997).

Article  CAS  PubMed  Google Scholar 

Muyrers, J. P. P., Zhang, Y. & Stewart, A. F. Techniques: recombinogenic engineering—new options for cloning and manipulating DNA. Trends Biochem. Sci. 26, 325–331 (2001).

Article  CAS  PubMed  Google Scholar 

Baudin, A., Ozier-kalogeropoulos, O., Denouel, A., Lacroute, F. & Cullin, C. A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res. 21, 3329–3330 (1993).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pu, W. et al. Genetic targeting of organ-specific blood vessels. Circ. Res. 123, 86–99 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Branda, C. S. & Dymecki, S. M. Talking about a revolution: the impact of site-specific recombinases on genetic analyses in mice. Dev. Cell 6, 7–28 (2004).

Article  CAS  PubMed  Google Scholar 

Gilbertson, L. Cre-lox recombination: Cre-ative tools for plant biotechnology. Trends Biotechnol. 21, 550–555 (2003).

Article  CAS  PubMed  Google Scholar 

Carroll, D. Genome engineering with zinc-finger nucleases. Genetics 188, 773–782 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S. & Gregory, P. D. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 11, 636–646 (2010).

Article  CAS  PubMed  Google Scholar 

Rahman, S. H., Maeder, M. L., Joung, J. K. & Cathomen, T. Zinc-finger nucleases for somatic gene therapy: the next frontier. Hum. Gene Ther. 22, 925–933 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Joung, J. K. & Sander, J. D. TALENs: a widely applicable technology for targeted genome editing. Nat. Rev. Mol. Cell Biol. 14, 49–55 (2013).

Article  CAS  PubMed  Google Scholar 

Chen, K. & Gao, C. TALENs: customizable molecular DNA scissors for genome engineering of plants. J. Genet. Genom. 40, 271–279 (2013).

Article  ADS  Google Scholar 

Sun, N. & Zhao, H. Transcription activator-like effector nucleases (TALENs): a highly efficient and versatile tool for genome editing. Biotechnol. Bioeng. 110, 1811–1821 (2013).

Article  CAS  PubMed  Google Scholar 

Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Gaudelli, N. M. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Doudna, J. A. & Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096 (2014).

Article  PubMed  Google Scholar 

Dussoix, D. & Arber, W. Host specificity of DNA produced by Escherichia coli. II. Control over acceptance of DNA from infecting phage lambda. J. Mol. Biol. 5, 37–49 (1962).

Article  CAS  PubMed  Google Scholar 

Arber, W. & Dussoix, D. Host specificity of DNA produced by Escherichia coli. I. Host controlled modification of bacteriophage lambda. J. Mol. Biol. 5, 18–36 (1962).

Article  CAS  PubMed  Google Scholar 

Loenen, W. A. M., Dryden, D. T. F., Raleigh, E. A., Wilson, G. G. & Murrayy, N. E. Highlights of the DNA cutters: a short history of the restriction enzymes. Nucleic Acids Res. 42, 3–19 (2014).

Article  CAS  PubMed  Google Scholar 

Morrow, J. F. & Berg, P. Cleavage of Simian virus 40 DNA at a unique site by a bacterial restriction enzyme. Proc. Natl. Acad. Sci. USA 69, 3365–3369 (1972).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Sternberg, N. & Hamilton, D. Bacteriophage P1 site-specific recombination. I. Recombination between loxP sites. J. Mol. Biol. 150, 467–486 (1981).

Article  CAS  PubMed  Google Scholar 

Broach, J. R., Guarascio, V. R. & Jayaram, M. Recombination within the yeast plasmid 2mu circle is site-specific. Cell 29, 227–234 (1982).

Article  CAS  PubMed  Google Scholar 

Hoess, R. H., Ziese, M. & Sternberg, N. P1 site-specific recombination: nucleotide sequence of the recombining sites. Proc. Natl. Acad. Sci. USA 79, 3398–3402 (1982).

Article  ADS 

留言 (0)

沒有登入
gif