Nanotechnology’s frontier in combatting infectious and inflammatory diseases: prevention and treatment

Chen, L. et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 9, 7204–7218 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Leiba, J. et al. Molecular actors of inflammation and their signaling pathways: mechanistic insights from zebrafish. Biology 12, 153 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meizlish, M. L., Franklin, R. A., Zhou, X. & Medzhitov, R. Tissue homeostasis and inflammation. Annu. Rev. Immunol. 39, 557–581 (2021).

Article  CAS  PubMed  Google Scholar 

Sansbury, B. E. & Spite, M. Resolution of acute inflammation and the role of resolvins in immunity, thrombosis, and vascular biology. Circ. Res. 119, 113–130 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bennett, J. M., Reeves, G., Billman, G. E. & Sturmberg, J. P. Inflammation–nature’s way to efficiently respond to all types of challenges: implications for understanding and managing “the epidemic” of chronic diseases. Front. Med. 5, 316 (2018).

Article  Google Scholar 

Medzhitov, R. Origin and physiological roles of inflammation. Nature 454, 428–435 (2008).

Article  CAS  PubMed  ADS  Google Scholar 

Herrero-Cervera, A., Soehnlein, O. & Kenne, E. Neutrophils in chronic inflammatory diseases. Cell. Mol. Immunol. 19, 177–191 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brzezicka, K. A. et al. Suppression of autoimmune rheumatoid arthritis with hybrid nanoparticles that induce B and T cell tolerance to self-antigen. ACS Nano 16, 20206–20221 (2022).

Article  CAS  PubMed  Google Scholar 

Yoo, D. et al. Anti‐inflammatory glycocalyx‐mimicking nanoparticles for colitis treatment: construction and in vivo evaluation. Angew. Chem. Int. Ed. 62, e202304815 (2023).

Article  CAS  Google Scholar 

Yuan, J. et al. Targeted (otherapies). ACS Nano 15, 16076–16094 (2021).

Article  CAS  PubMed  Google Scholar 

Yasamineh, S. et al. An overview on nanoparticle-based strategies to fight viral infections with a focus on COVID-19. J. Nanobiotechnol. 20, 440 (2022).

Article  Google Scholar 

Huang, Y.-S. et al. Metal nanoparticles and nanoparticle composites are effective against Haemophilus influenzae, Streptococcus pneumoniae, and multidrug-resistant bacteria. J. Microbiol. Immunol. Infect. 55, 708–715 (2022).

Article  CAS  PubMed  Google Scholar 

Kaur, K., Kumar, P. & Kush, P. Amphotericin B loaded ethyl cellulose nanoparticles with magnified oral bioavailability for safe and effective treatment of fungal infection. Biomed. Pharmacother. 128, 110297 (2020).

Article  CAS  PubMed  Google Scholar 

Zhou, Y. et al. Controlled copper in situ growth-amplified lateral flow sensors for sensitive, reliable, and field-deployable infectious disease diagnostics. Biosens. Bioelectron. 171, 112753 (2021).

Article  CAS  PubMed  Google Scholar 

González, L. F. et al. Intranasal delivery of interferon-β-loaded nanoparticles induces control of neuroinflammation in a preclinical model of multiple sclerosis: a promising simple, effective, non-invasive, and low-cost therapy. J. Control Release 331, 443–459 (2021).

Article  PubMed  Google Scholar 

Zhang, L. et al. Nanoenzyme engineered neutrophil-derived exosomes attenuate joint injury in advanced rheumatoid arthritis via regulating inflammatory environment. Bioact. Mater. 18, 1–14 (2022).

PubMed  PubMed Central  Google Scholar 

Lussier, F., Staufer, O., Platzman, I. & Spatz, J. P. Can bottom-up synthetic biology generate advanced drug-delivery systems? Trends Biotechnol. 39, 445–459 (2021).

Article  CAS  PubMed  Google Scholar 

Zeng, Q. et al. Wound dressing: from nanomaterials to diagnostic dressings and healing evaluations. ACS Nano 16, 1708–1733 (2022).

Article  CAS  PubMed  Google Scholar 

Liu, T. et al. Nanomaterials and nanomaterials-based drug delivery to promote cutaneous wound healing. Adv. Drug Deliv. Rev. 193, 114670 (2023).

Article  CAS  PubMed  Google Scholar 

Geng, H. et al. Noble metal nanoparticle biosensors: from fundamental studies toward point-of-care diagnostics. Acc. Chem. Res. 55, 593–604 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Parsamian, P. et al. Enhanced nanobubble formation: gold nanoparticle conjugation to Qβ virus-like particles. ACS Nano 17, 7797–7805 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Avellan, A. et al. Nanoparticle size and coating chemistry control foliar uptake pathways, translocation, and leaf-to-rhizosphere transport in wheat. ACS Nano 13, 5291–5305 (2019).

Article  CAS  PubMed  Google Scholar 

Darabdhara, G. et al. Ag and Au nanoparticles/reduced graphene oxide composite materials: Synthesis and application in diagnostics and therapeutics. Adv. Colloid Interface Sci. 271, 101991 (2019).

Article  CAS  PubMed  Google Scholar 

Shabatina, T. I., Vernaya, O. I., Shimanovskiy, N. L. & Melnikov, M. Y. Metal and metal oxides nanoparticles and nanosystems in anticancer and antiviral theragnostic agents. Pharmaceutics 15, 1181 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shrivastav, A. M., Cvelbar, U. & Abdulhalim, I. A comprehensive review on plasmonic-based biosensors used in viral diagnostics. Commun. Biol. 4, 70 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leuschner, F. et al. Silencing of CCR2 in myocarditis. Eur. Heart J. 36, 1478–1488 (2015).

Article  CAS  PubMed  Google Scholar 

Grippin, A. J. et al. Dendritic cell-activating magnetic nanoparticles enable early prediction of antitumor response with magnetic resonance imaging. ACS Nano 13, 13884–13898 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Garrido, C. et al. Gold nanoparticles to improve HIV drug delivery. Future Med Chem. 7, 1097–1107 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khan, T. et al. Plant-based gold nanoparticles; a comprehensive review of the decade-long research on synthesis, mechanistic aspects and diverse applications. Adv. Colloid Interface Sci. 272, 102017 (2019).

Article  CAS  PubMed  Google Scholar 

Reidy, B. et al. Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials 6, 2295–2350 (2013).

Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

Rudramurthy, G., Swamy, M., Sinniah, U. & Ghasemzadeh, A. Nanoparticles: alternatives against drug-resistant pathogenic microbes. Molecules 21, 836 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Porter, G. C. et al. AgNP/Alginate Nanocomposite hydrogel for antimicrobial and antibiofilm applications. Carbohydr. Polym. 251, 117017 (2021).

Article  CAS  PubMed  Google Scholar 

Chakravarty, M. & Vora, A. Nanotechnology-based antiviral therapeutics. Drug Deliv. Transl. Res. 11, 748–787 (2020).

Article  PubMed Central  Google Scholar 

Lara, H. H., Ixtepan-Turrent, L., Garza-Treviño, E. N. & Rodriguez-Padilla, C. PVP-coated silver nanoparticles block the transmission of cell-free and cell-associated HIV-1 in human cervical culture. J. Nanobiotechnol. 8, 15 (2010).

Article  Google Scholar 

Yang, Y. et al. Targeted silver nanoparticles for rheumatoid arthritis therapy via macrophage apoptosis and Re-polarization. Biomaterials 264, 120390 (2021).

Article  CAS  PubMed  Google Scholar 

AshaRani, P. V., Low Kah Mun, G., Hande, M. P. & Valiyaveettil, S. Cytotoxicity and Genotoxicity of Silver Nanoparticles in Human Cells. ACS Nano 3, 279–290 (2008).

Article  Google Scholar 

Taheri, S. et al. Substrate independent silver nanoparticle based antibacterial coatings. Biomaterials 35, 4601–4609 (2014).

Article  CAS  PubMed  Google Scholar 

Ye, S. et al. Antiviral activity of graphene oxide: how sharp edged structure and charge matter. ACS Appl. Mater. Interfaces 7, 21571–21579 (2015).

Article 

留言 (0)

沒有登入
gif