Mature oocyte dysmorphisms may be associated with progesterone levels, mitochondrial DNA content, and vitality in luteal granulosa cells

Wyns C, Bergh C, Calhaz-Jorge C, De Geyter C, Kupka MS, Motrenko T, et al. ART in Europe, 2016: results generated from European registries by ESHRE†. Hum Reprod Open. 2020;2020:hoaa032. https://doi.org/10.1093/hropen/hoaa032

Zagadailov P, Hsu A, Seifer DB, Stern JE. Differences in utilization of Intracytoplasmic sperm injection (ICSI) within human services (HHS) regions and metropolitan megaregions in the U.S. Reprod Biol Endocrinol. 2017;15:45. https://doi.org/10.1186/s12958-017-0263-4

Setti AS, Figueira RCS, Braga DPAF, Colturato SS, Iaconelli A, Borges E. Relationship between oocyte abnormal morphology and intracytoplasmic sperm injection outcomes: a meta-analysis. Eur J Obstet Gynecol Reprod Biol. 2011;159:364–70.

Article  PubMed  Google Scholar 

Bartolacci A, Intra G, Coticchio G, dell’Aquila M, Patria G, Borini A. Does morphological assessment predict oocyte developmental competence? A systematic review and proposed score. J Assist Reprod Genet. 2022;39:3–17. https://doi.org/10.1007/s10815-021-02370-3.

Article  PubMed  PubMed Central  Google Scholar 

Nikiforov D, Grøndahl ML, Hreinsson J, Andersen CY. Human oocyte morphology and outcomes of infertility treatment: a systematic review. Reprod Sci. 2022;29:2768–85. https://doi.org/10.1007/s43032-021-00723-y.

Article  PubMed  Google Scholar 

Magli MC, Jones GM, Lundin K, van den Abbeel E. Atlas of human embryology: from oocytes to preimplantation embryos. Preface Hum Reprod. 2012;27(Suppl):1.

Google Scholar 

Uyar A, Torrealday S, Seli E. Cumulus and granulosa cell markers of oocyte and embryo quality. Fertil Steril Am Soc Reproductive Med. 2013;99:979–97. https://doi.org/10.1016/j.fertnstert.2013.01.129.

Article  CAS  Google Scholar 

Dompe C, Kulus M, Stefańska K, Kranc W, Chermuła B, Bryl R, et al. Human granulosa cells—stemness properties, molecular cross-talk and follicular angiogenesis. Cells. 2021;10.

Sutton-McDowall ML, Gilchrist RB, Thompson JG. The pivotal role of glucose metabolism in determining oocyte developmental competence. Reproduction. 2010;139:685–95.

Article  CAS  PubMed  Google Scholar 

Sutton-McDowall ML, Mottershead DG, Gardner DK, Gilchrist RB, Thompson JG. Metabolic differences in bovine cumulus-oocyte complexes matured in vitro in the presence or absence of follicle-stimulating hormone and bone morphogenetic protein 151. Biol Reprod. 2012;87(1–8):87. https://doi.org/10.1095/biolreprod.112.102061.

Article  CAS  PubMed  Google Scholar 

Turathum B, Gao EM, Chian RC. The function of cumulus cells in oocyte growth and maturation and in subsequent ovulation and fertilization. Cells. 2021;10:1–18.

Article  Google Scholar 

Richani D, Gilchrist RB. The epidermal growth factor network: role in oocyte growth, maturation and developmental competence. Hum Reprod Update. 2018;24:1–14. https://doi.org/10.1093/humupd/dmx029.

Article  CAS  PubMed  Google Scholar 

Tesarik JAN, Biology R, Hospital A, Mbdicale R, Biology M, Faculty G. Oocytes : relationship to oocyte developmental. J Clin Endocrinol Metab. 1995;03:1438–43.

Google Scholar 

Tesarik J, Mendoza C. Direct non-genomic effects of follicular steroids on maturing human oocytes: oestrogen versus androgen antagonism. Hum Reprod Update. 1997;3:95–100. https://doi.org/10.1093/humupd/3.2.95.

Article  CAS  PubMed  Google Scholar 

Hasegawa J, Yanaihara A, Iwasaki S, Otsuka Y, Negishi M, Akahane T, et al. Reduction of progesterone receptor expression in human cumulus cells at the time of oocyte collection during IVF is associated with good embryo quality. Hum Reprod. 2005;20:2194–200. https://doi.org/10.1093/humrep/dei005.

Article  CAS  PubMed  Google Scholar 

Hu J, Zhang Z, Shen W-J, Azhar S. Cellular cholesterol delivery, intracellular processing and utilization for biosynthesis of steroid hormones. Nutr Metab (Lond). 2010;7:47. https://doi.org/10.1186/1743-7075-7-47.

Article  CAS  PubMed  Google Scholar 

Dai Q, Likes CE III, Luz AL, Mao L, Yeh JS, Wei Z, et al. A mitochondrial progesterone receptor increases cardiac beta-oxidation and remodeling. J Endocr Soc. 2019;3:446–67. https://doi.org/10.1210/js.2018-00219.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Behera MA, Dai Q, Garde R, Saner C, Jungheim E, Price TM. Progesterone stimulates mitochondrial activity with subsequent inhibition of apoptosis in MCF-10A benign breast epithelial cells. Am J Physiol Metab. Am Physiol Soc. 2009;297:E1089-96. https://doi.org/10.1152/ajpendo.00209.2009.

Article  CAS  Google Scholar 

Klinge CM. Estrogenic control of mitochondrial function. Redox Biol . Elsevier B.V.; 2020;31:101435. https://doi.org/10.1016/j.redox.2020.101435

Yager JD, Chen JQ. Mitochondrial estrogen receptors - new insights into specific functions. Trends Endocrinol Metab . Elsevier; 2007;18:89–91. https://doi.org/10.1016/j.tem.2007.02.006

Liu Y, Han M, Li X, Wang H, Ma M, Zhang S, et al. Age-related changes in the mitochondria of human mural granulosa cells. Hum Reprod. 2017;32:2465–73.

Article  CAS  PubMed  Google Scholar 

Zhang Q, Ren J, Wang F, Pan M, Cui L, Li M, et al. Mitochondrial and glucose metabolic dysfunctions in granulosa cells induce impaired oocytes of polycystic ovary syndrome through Sirtuin 3. Free Radic Biol Med Pergamon. 2022;187:1–16.

Article  CAS  Google Scholar 

Bhargava D, Urs S, Wu W, Komrskova K, Postlerova P, Lin Y, et al. Mitochondrial function in modulating human granulosa cell steroidogenesis and female fertility. Int J Mol Sci. 2020;

Lamas-toranzo I, Gonz L, Alvarez PB-, Gonz P. The human cumulus cell transcriptome provides poor predictive value for embryo transfer outcome. Reprod Biomed Online. 2023;46:783–91.

Article  PubMed  Google Scholar 

Mantovani C, Luz D, Gomes M, Broi D, Koopman LDO, Plaça JR, et al. Transcriptomic analysis of cumulus cells shows altered pathways in patients with minimal and mild endometriosis. Sci Rep . Nature Publishing Group UK; 2022;1–9. https://doi.org/10.1038/s41598-022-09386-4

Meseguer M, Rubio I, Cruz M, Basile N, Marcos J, Requena A. Embryo incubation and selection in a time-lapse monitoring system improves pregnancy outcome compared with a standard incubator: a retrospective cohort study. Fertil Steril Elsevier. 2012;98:1481-1489.e10.

Article  Google Scholar 

Bamford T, Barrie A, Montgomery S, Dhillon-Smith R, Campbell A, Easter C, et al. Morphological and morphokinetic associations with aneuploidy: a systematic review and meta-analysis. Hum Reprod Update. 2022;28:656–86. https://doi.org/10.1093/humupd/dmac022.

Article  PubMed  Google Scholar 

Meng Q, Xu Y, Zheng A, Li H, Ph D, Ding J. Noninvasive embryo evaluation and selection by time-lapse monitoring vs. conventional morphologic assessment in women undergoing in vitro fertilization / intracytoplasmic sperm injection : a single-center randomized controlled study. Fertil Steril. Am Soc Reproductive Med. 2023;117:1203–12. https://doi.org/10.1016/j.fertnstert.2022.02.015.

Article  Google Scholar 

Xin B, Hang M, Lei Z, Bo J. Neonatal outcomes of embryos cultured in a time ‑ lapse incubation system : an analysis of more than 15 , 000 fresh transfer cycles. Reprod Sci . Springer International Publishing; 2021;1–7. https://doi.org/10.1007/s43032-021-00714-z

Tabibnejad N, Sheikhha MH, Ghasemi N, Fesahat F, Soleimani M, Aflatoonian A. Association between early embryo morphokinetics plus cumulus cell gene expression and assisted reproduction outcomes in polycystic ovary syndrome women. Reprod Biomed Online . Elsevier Ltd; 2019;38:139–51. https://doi.org/10.1016/j.rbmo.2018.10.010

Raad G, Tanios J, Kerbaj S, Mourad Y, Fakih F, Shamas F, et al. Stress management during the intracytoplasmic sperm injection cycle may slow down first embryo cleavage and accelerate embryo compaction: a pilot randomized controlled trial. Psychother Psychosom. 2021;90:119–26.

Article  PubMed  Google Scholar 

Bakos HW, Henshaw RC, Mitchell M, Lane M. Paternal body mass index is associated with decreased blastocyst development and reduced live birth rates following assisted reproductive technology. Fertil Steril . Elsevier Ltd; 2011;95:1700–4. https://doi.org/10.1016/j.fertnstert.2010.11.044

Bellver J, Mifsud A, Grau N, Privitera L, Meseguer M. Similar morphokinetic patterns in embryos derived from obese and normoweight infertile women: a time-lapse study. Hum Reprod. 2013;28:794–800.

Article  CAS  PubMed  Google Scholar 

Feil D, Henshaw RC, Lane M. Day 4 embryo selection is equal to Day 5 using a new embryo scoring system validated in single embryo transfers. Hum Reprod. 2008;23:1505–10. https://doi.org/10.1093/humrep/dem419.

Article  PubMed  Google Scholar 

Yu L, Liu M, Wang Z, Liu T, Liu S, Wang B, et al. Correlation between steroid levels in follicular fluid and hormone synthesis related substances in its exosomes and embryo quality in patients with polycystic ovary syndrome. Reprod Biol Endocrinol. 2021;19:74. https://doi.org/10.1186/s12958-021-00749-6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Floehr J, Dietzel E, Neulen J, Rösing B, Weissenborn U, Jahnen-Dechent W. Association of high fetuin-B concentrations in serum with fertilization rate in IVF: a cross-sectional pilot study. Hum Reprod. 2016;31:630–7. https://doi.org/10.1093/humrep/dev340.

Article  CAS  PubMed  Google Scholar 

Qu F, Wang F-F, Lu X-E, Dong M-Y, Sheng J-Z, Lv P-P, et al. Altered aquaporin expression in women with polycystic ovary syndrome: hyperandrogenism in follicular fluid inhibits aquaporin-9 in granulosa cells through the phosphatidylinositol 3-kinase pathway. Hum Reprod. 2010;25:1441–50. https://doi.org/10.1093/humrep/deq078.

Article  CAS  PubMed  Google Scholar 

Scalici E, Traver S, Molinari N, Mullet T, Monforte M, Vintejoux E, et al. Cell-free DNA in human follicular fluid as a biomarker of embryo quality. Hum Reprod. 2014;29:2661–9.

Article  CAS  PubMed  Google Scholar 

Raad G, Bazzi M, Tanios J, Mourad Y, Azouri J, Azouri J, et al. Optimization of the cell aggregates method for isolation and purification of human granulosa cells from follicular fluid. Int J Fertil Steril. 2020;13:339–45.

CAS  PubMed  Google Scholar 

Wells D, Kaur K, Grifo J, Glassner M, Taylor JC, Fragouli E, et al. Clinical utilisation of a rapid low-pass whole genome sequencing technique for the diagnosis of aneuploidy in human embryos prior to implantation. J Med Genet. 2014;51:553–62.

Article  CAS  PubMed  Google Scholar 

Fragouli E, Spath K, Alfarawati S, Kaper F, Craig A, Michel CE, et al. Altered levels of mitochondrial DNA are associated with female age, aneuploidy, and provide an independent measure of embryonic implantation potential. PLoS Genet. 2015;11:1–18.

Article  Google Scholar 

Shenoy CC, Khan Z, Coddington CC, Stewart EA, Morbeck DE. Symmetry at the 4-cell stage is associated with embryo aneuploidy. Reprod Sci . Springer International Publishing; 2021;28:3473–9. https://doi.org/10.1007/s43032-021-00758-1

Coello A, Meseguer M, Galán A, Alegre L, Remohí J, Cobo A. Analysis of the morphological dynamics of blastocysts after vitrification/warming: defining new predictive variables of implantation. Fertil Steril. 2017;108:659-666.e4.

Article  PubMed  Google Scholar 

Park JK, Ahn S-Y, Seok SH, Park SY, Bang S, Eum JH, et al. Clinical usability of embryo development using a combined qualitative and quantitative approach in a single vitrified-warmed blastocyst transfer: assessment of pre-vitrified blastocyst diameter and post-warmed blastocyst re-expansion speed. J. Clin. Med. 2022.

Ebner T, Ph D, Moser M, Ph D, Sommergruber M. Occurrence and developmental consequences of vacuoles throughout preimplantation development. Fertil Steril. 2005;83.

Balaban B, Brison D, Calderón G, Catt J, Conaghan J, Cowan L, et al. The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Hum Reprod. 2011;26:1270–83.

留言 (0)

沒有登入
gif