The role of CoQ10 in embryonic development

Wang L, Sang Q. MOS is a novel genetic marker for human early embryonic arrest and fragmentation. EMBO Mol Med. 2021;13(12):e15323.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu Y, et al. Mutations in PADI6 cause female infertility characterized by early embryonic arrest. Am J Hum Genet. 2016;99(3):744–52.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Van den Veyver IB, Al-Hussaini TK. Biparental hydatidiform moles: a maternal effect mutation affecting imprinting in the offspring. Hum Reprod Update. 2006;12(3):233–42.

Article  PubMed  Google Scholar 

Zhao J, et al. Metabolic remodelling during early mouse embryo development. Nat Metab. 2021;3(10):1372–84.

Article  CAS  PubMed  Google Scholar 

Wang M, et al. Autophagy: a multifaceted player in the fate of sperm. Hum Reprod Update. 2022;28(2):200–31.

Article  CAS  PubMed  Google Scholar 

Gott AL, et al. Non-invasive measurement of pyruvate and glucose uptake and lactate production by single human preimplantation embryos. Hum Reprod. 1990;5(1):104–8.

Article  CAS  PubMed  Google Scholar 

Rossmann MP, et al. Cell-specific transcriptional control of mitochondrial metabolism by TIF1gamma drives erythropoiesis. Science. 2021;372(6543):716–21.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

You X, et al. Embryonic expression of Nras(G 12 D) leads to embryonic lethality and cardiac defects. Front Cell Dev Biol. 2021;9: 633661.

Article  PubMed  PubMed Central  Google Scholar 

Wu YD Yang, and GY Chen. Targeted disruption of Rab1a causes early embryonic lethality. Int J Mol Med. 2022;49(4):46.

Drovandi S, et al. Variation of the clinical spectrum and genotype-phenotype associations in coenzyme Q10 deficiency associated glomerulopathy. Kidney Int. 2022;102(3):592–603.

Article  MathSciNet  CAS  PubMed  Google Scholar 

Griffiths KK, et al. Inefficient thermogenic mitochondrial respiration due to futile proton leak in a mouse model of fragile X syndrome. FASEB J. 2020;34(6):7404–26.

Article  CAS  PubMed  Google Scholar 

Ogasahara S, et al. Treatment of Kearns-Sayre syndrome with coenzyme Q10. Neurology. 1986;36(1):45–53.

Article  CAS  PubMed  Google Scholar 

Pallotti F et al. The roles of coenzyme Q in disease: direct and indirect involvement in cellular functions. Int J Mol Sci. 2021;23(1):128.

Gutierrez-Mariscal FM et al. Coenzyme Q(10) Supplementation for the reduction of oxidative stress: clinical implications in the treatment of chronic diseases. Int J Mol Sci. 2020;21(21):7870.

Wang Y, Hekimi S. Understanding ubiquinone. Trends Cell Biol. 2016;26(5):367–78.

Article  CAS  PubMed  Google Scholar 

Lapuente-Brun E, et al. Supercomplex assembly determines electron flux in the mitochondrial electron transport chain. Science. 2013;340(6140):1567–70.

Article  ADS  CAS  PubMed  Google Scholar 

Stefely JA, Pagliarini DJ. Biochemistry of mitochondrial coenzyme Q biosynthesis. Trends Biochem Sci. 2017;42(10):824–43.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alcazar-Fabra M, et al. Primary coenzyme Q deficiencies: a literature review and online platform of clinical features to uncover genotype-phenotype correlations. Free Radic Biol Med. 2021;167:141–80.

Article  CAS  PubMed  Google Scholar 

Zhao M, et al. L-shaped association between dietary coenzyme Q10 intake and high-sensitivity C-reactive protein in Chinese adults: a national cross-sectional study. Food Funct. 2023;14(21):9815–24.

Article  CAS  PubMed  Google Scholar 

Paredes-Fuentes AJ et al. Coenzyme Q(10) Treatment monitoring in different human biological samples. Antioxidants (Basel). 2020;9(10):979.

Griffiths KKA Wang, and RJ Levy. Assessment of open probability of the mitochondrial permeability transition pore in the setting of coenzyme Q excess. J Vis Exp. 2022(184):10.3791/63646.

Barajas M, et al. The newborn Fmr1 knockout mouse: a novel model of excess ubiquinone and closed mitochondrial permeability transition pore in the developing heart. Pediatr Res. 2021;89(3):456–63.

Article  CAS  PubMed  Google Scholar 

Chazaud C, et al. Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway. Dev Cell. 2006;10(5):615–24.

Article  CAS  PubMed  Google Scholar 

Gauster M, et al. Early human trophoblast development: from morphology to function. Cell Mol Life Sci. 2022;79(6):345.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gardner RL, Rossant J. Investigation of the fate of 4–5 day post-coitum mouse inner cell mass cells by blastocyst injection. J Embryol Exp Morphol. 1979;52:141–52.

CAS  PubMed  Google Scholar 

Lawson KA and RA Pedersen. Clonal analysis of cell fate during gastrulation and early neurulation in the mouse. Ciba Found Symp, 1992;165:3–21.

Smith JL, Schoenwolf GC. Neurulation: coming to closure. Trends Neurosci. 1997;20(11):510–7.

Article  CAS  PubMed  Google Scholar 

Tam PP, Tan SS. The somitogenetic potential of cells in the primitive streak and the tail bud of the organogenesis-stage mouse embryo. Development. 1992;115(3):703–15.

Article  CAS  PubMed  Google Scholar 

Wardle FC. Mesoderm differentiation in vertebrate development and regenerative medicine. Semin Cell Dev Biol. 2022;127:1–2.

Article  PubMed  Google Scholar 

Adhikari D, et al. Oocyte mitochondria-key regulators of oocyte function and potential therapeutic targets for improving fertility. Biol Reprod. 2022;106(2):366–77.

Article  PubMed  Google Scholar 

Santos TA, El Shourbagy S, St John JC. Mitochondrial content reflects oocyte variability and fertilization outcome. Fertil Steril. 2006;85(3):584–91.

Van Blerkom J. Mitochondria in human oogenesis and preimplantation embryogenesis: engines of metabolism, ionic regulation and developmental competence. Reproduction. 2004;128(3):269–80.

Article  PubMed  Google Scholar 

Tarazona AM, et al. Mitochondrial activity, distribution and segregation in bovine oocytes and in embryos produced in vitro. Reprod Domest Anim. 2006;41(1):5–11.

Article  CAS  PubMed  Google Scholar 

Czernik M, et al. Author correction: mitochondrial function and intracellular distribution is severely affected in in vitro cultured mouse embryos. Sci Rep. 2022;12(1):21276.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Marchante M, et al. Deciphering reproductive aging in women using a NOD/SCID mouse model for distinct physiological ovarian phenotypes. Aging (Albany NY). 2023;15(20):10856–74.

PubMed  Google Scholar 

He J, et al. Theaflavin 3, 3’-digallate delays ovarian aging by improving oocyte quality and regulating granulosa cell function. Oxid Med Cell Longev. 2021;2021:7064179.

Article  PubMed  PubMed Central  Google Scholar 

Qin X, et al. TrkB agonist antibody ameliorates fertility deficits in aged and cyclophosphamide-induced premature ovarian failure model mice. Nat Commun. 2022;13(1):914.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

van der Reest J, et al. Mitochondria: their relevance during oocyte ageing. Ageing Res Rev. 2021;70:101378.

Article  ADS  PubMed  Google Scholar 

Jiang Z, Shen H. Mitochondria: emerging therapeutic strategies for oocyte rescue. Reprod Sci. 2022;29(3):711–22.

Article  CAS  PubMed  Google Scholar 

Perez GI, et al. Mitochondria and the death of oocytes. Nature. 2000;403(6769):500–1.

Article  ADS  CAS  PubMed  Google Scholar 

Zhang H, et al. Melatonin improves the quality of maternally aged oocytes by maintaining intercellular communication and antioxidant metabolite supply. Redox Biol. 2022;49:102215.

Article  CAS  PubMed  Google Scholar 

Liu J, et al. Transcriptomic responses of porcine cumulus cells to heat exposure during oocytes in vitro maturation. Mol Reprod Dev. 2021;88(1):43–54.

Article  CAS  PubMed  Google Scholar 

Hu Y, et al. Transcriptomic profiles reveal the characteristics of oocytes and cumulus cells at GV, MI, and MII in follicles before ovulation. J Ovarian Res. 2023;16(1):225.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif