Corben, A. D. (2013). Pathology of invasive breast disease. Surgical Clinics of North America, 93(2), 363–392. https://doi.org/10.1016/j.suc.2013.01.003.
Arpino, G., Bardou, V. J., Clark, G. M., & Elledge, R. M. (2004). Infiltrating lobular carcinoma of the breast: Tumor characteristics and clinical outcome. Breast Cancer Research, 6(3), R149–156. https://doi.org/10.1186/bcr767.
Article PubMed PubMed Central Google Scholar
Perou, C. M., Sorlie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S., Rees, C. A., et al. (2000). Molecular portraits of human breast tumours. Nature, 406(6797), 747–752. https://doi.org/10.1038/35021093.
Article CAS PubMed Google Scholar
Johnson, K. S., Conant, E. F., & Soo, M. S. (2020). Molecular subtypes of breast Cancer: A review for breast radiologists. Journal of Breast Imaging, 3(1), 12–24. https://doi.org/10.1093/jbi/wbaa110.
Orrantia-Borunda, E., Anchondo-Nunez, P., Acuna-Aguilar, L. E., Gomez-Valles, F. O., & Ramirez-Valdespino, C. A. (2022). Subtypes of Breast Cancer. In H. N. Mayrovitz (Ed.), Breast Cancer. Brisbane (AU).
Siegel, R. L., Miller, K. D., Fuchs, H. E., & Jemal, A. (2022). Cancer statistics, 2022. C Ca: A Cancer Journal for Clinicians, 72(1), 7–33. https://doi.org/10.3322/caac.21708.
Paul, C. D., Mistriotis, P., & Konstantopoulos, K. (2017). Cancer cell motility: Lessons from migration in confined spaces. Nature Reviews Cancer, 17(2), 131–140. https://doi.org/10.1038/nrc.2016.123.
Article CAS PubMed Google Scholar
Wirtz, D., Konstantopoulos, K., & Searson, P. C. (2011). The physics of cancer: The role of physical interactions and mechanical forces in metastasis. Nature Reviews Cancer, 11(7), 512–522. https://doi.org/10.1038/nrc3080.
Article CAS PubMed PubMed Central Google Scholar
Nia, H. T., Munn, L. L., & Jain, R. K. (2020). Physical traits of cancer. Science, 370(6516). https://doi.org/10.1126/science.aaz0868.
Bera, K., Kiepas, A., Zhang, Y., Sun, S. X., & Konstantopoulos, K. (2022). The interplay between physical cues and mechanosensitive ion channels in cancer metastasis. Front Cell Dev Biol, 10, 954099. https://doi.org/10.3389/fcell.2022.954099.
Article PubMed PubMed Central Google Scholar
Heldin, C. H., Rubin, K., Pietras, K., & Ostman, A. (2004). High interstitial fluid pressure - an obstacle in cancer therapy. Nature Reviews Cancer, 4(10), 806–813. https://doi.org/10.1038/nrc1456.
Article CAS PubMed Google Scholar
Nathanson, S. D., & Nelson, L. (1994). Interstitial fluid pressure in breast cancer, benign breast conditions, and breast parenchyma. Annals of Surgical Oncology, 1(4), 333–338. https://doi.org/10.1007/BF03187139.
Article CAS PubMed Google Scholar
Hashizume, H., Baluk, P., Morikawa, S., McLean, J. W., Thurston, G., Roberge, S., et al. (2000). Openings between defective endothelial cells explain tumor vessel leakiness. American Journal of Pathology, 156(4), 1363–1380. https://doi.org/10.1016/S0002-9440(10)65006-7.
Article CAS PubMed PubMed Central Google Scholar
Jain, R. K. (2001). Delivery of molecular medicine to solid tumors: Lessons from in vivo imaging of gene expression and function. Journal of Controlled Release : Official Journal of the Controlled Release Society, 74(1–3), 7–25. https://doi.org/10.1016/s0168-3659(01)00306-6.
Article CAS PubMed Google Scholar
Greenberg, J. I., & Cheresh, D. A. (2009). VEGF as an inhibitor of tumor vessel maturation: Implications for cancer therapy. Expert Opinion on Biological Therapy, 9(11), 1347–1356. https://doi.org/10.1517/14712590903208883.
Article CAS PubMed Google Scholar
De Bock, K., Cauwenberghs, S., & Carmeliet, P. (2011). Vessel abnormalization: Another hallmark of cancer? Molecular mechanisms and therapeutic implications. Current Opinion in Genetics & Development, 21(1), 73–79. https://doi.org/10.1016/j.gde.2010.10.008.
Leu, A. J., Berk, D. A., Lymboussaki, A., Alitalo, K., & Jain, R. K. (2000). Absence of functional lymphatics within a murine sarcoma: A molecular and functional evaluation. Cancer Research, 60(16), 4324–4327.
Wu, M., Frieboes, H. B., McDougall, S. R., Chaplain, M. A., Cristini, V., & Lowengrub, J. (2013). The effect of interstitial pressure on tumor growth: Coupling with the blood and lymphatic vascular systems. Journal of Theoretical Biology, 320, 131–151. https://doi.org/10.1016/j.jtbi.2012.11.031.
Less, J. R., Posner, M. C., Boucher, Y., Borochovitz, D., Wolmark, N., & Jain, R. K. (1992). Interstitial hypertension in human breast and colorectal tumors. Cancer Research, 52(22), 6371–6374.
Dadiani, M., Kalchenko, V., Yosepovich, A., Margalit, R., Hassid, Y., Degani, H., et al. (2006). Real-time imaging of lymphogenic metastasis in orthotopic human breast cancer. Cancer Research, 66(16), 8037–8041. https://doi.org/10.1158/0008-5472.CAN-06-0728.
Article CAS PubMed Google Scholar
Ferretti, S., Allegrini, P. R., Becquet, M. M., & McSheehy, P. M. (2009). Tumor interstitial fluid pressure as an early-response marker for anticancer therapeutics. Neoplasia (New York, N.Y.), 11(9), 874–881. https://doi.org/10.1593/neo.09554.
Article CAS PubMed Google Scholar
Kim, S., Decarlo, L., Cho, G. Y., Jensen, J. H., Sodickson, D. K., Moy, L., et al. (2012). Interstitial fluid pressure correlates with intravoxel incoherent motion imaging metrics in a mouse mammary carcinoma model. Nmr in Biomedicine, 25(5), 787–794. https://doi.org/10.1002/nbm.1793.
Islam, M. T., Tang, S., Tasciotti, E., & Righetti, R. (2021). Non-invasive Assessment of the spatial and temporal distributions of interstitial fluid pressure, Fluid Velocity and Fluid Flow in Cancers in vivo. Ieee Access : Practical Innovations, Open Solutions, 9, 89222–89233. https://doi.org/10.1109/ACCESS.2021.3089454.
Hassid, Y., Furman-Haran, E., Margalit, R., Eilam, R., & Degani, H. (2006). Noninvasive magnetic resonance imaging of transport and interstitial fluid pressure in ectopic human lung tumors. Cancer Research, 66(8), 4159–4166. https://doi.org/10.1158/0008-5472.CAN-05-3289.
Article CAS PubMed Google Scholar
Boucher, Y., Baxter, L. T., & Jain, R. K. (1990). Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: Implications for therapy. Cancer Research, 50(15), 4478–4484.
Jain, R. K., & Baxter, L. T. (1988). Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: Significance of elevated interstitial pressure. Cancer Research, 48(24 Pt 1), 7022–7032.
Chauhan, V. P., Stylianopoulos, T., Boucher, Y., & Jain, R. K. (2011). Delivery of molecular and nanoscale medicine to tumors: Transport barriers and strategies. Annu Rev Chem Biomol Eng, 2, 281–298. https://doi.org/10.1146/annurev-chembioeng-061010-114300.
Article CAS PubMed Google Scholar
Stylianopoulos, T., & Jain, R. K. (2013). Combining two strategies to improve perfusion and drug delivery in solid tumors. Proc Natl Acad Sci U S A, 110(46), 18632–18637. https://doi.org/10.1073/pnas.1318415110.
Article CAS PubMed PubMed Central Google Scholar
Tong, R. T., Boucher, Y., Kozin, S. V., Winkler, F., Hicklin, D. J., & Jain, R. K. (2004). Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Research, 64(11), 3731–3736. https://doi.org/10.1158/0008-5472.CAN-04-0074.
Article CAS PubMed Google Scholar
Chauhan, V. P., Stylianopoulos, T., Martin, J. D., Popovic, Z., Chen, O., Kamoun, W. S., et al. (2012). Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nature Nanotechnology, 7(6), 383–388. https://doi.org/10.1038/nnano.2012.45.
Article CAS PubMed PubMed Central Google Scholar
Meng, L., Gan, S., Zhou, Y., Cheng, Y., Ding, Y., Tong, X., et al. (2018). Oxygen-rich chemotherapy via modified Abraxane to inhibit the growth and metastasis of triple-negative breast cancer. Biomater Sci, 7(1), 168–177. https://doi.org/10.1039/c8bm00753e.
Article CAS PubMed Google Scholar
Chen, Q., Liang, C., Wang, C., & Liu, Z. (2015). An imagable and photothermal abraxane-like nanodrug for combination cancer therapy to treat subcutaneous and metastatic breast tumors. Advanced Materials, 27(5), 903–910. https://doi.org/10.1002/adma.201404308.
Article CAS PubMed Google Scholar
Fukumura, D., Kloepper, J., Amoozgar, Z., Duda, D. G., & Jain, R. K. (2018). Enhancing cancer immunotherapy using antiangiogenics: Opportunities and challenges. Nature Reviews. Clinical Oncology, 15(5), 325–340. https://doi.org/10.1038/nrclinonc.2018.29.
Article CAS PubMed PubMed Central Google Scholar
Kazazi-Hyseni, F., Beijnen, J. H., & Schellens, J. H. (2010). Bevacizumab Oncologist, 15(8), 819–825, doi:https://doi.org/10.1634/theoncologist.2009-0317.
Article CAS PubMed Google Scholar
Miller, K., Wang, M., Gralow, J., Dickler, M., Cobleigh, M., Perez, E. A., et al. (2007). Paclitaxel plus Bevacizumab versus paclitaxel alone for metastatic breast cancer. New England Journal of Medicine, 357(26), 2666–2676. https://doi.org/10.1056/NEJMoa072113.
Comments (0)