Comparison of keratometric values and anterior segment parameters measured using Scheimpflug Sirius topography and Lenstar biometry

Lopez de la Fuente C, Sanchez-Cano A, Segura F, Pinilla I (2014) Comparison of anterior segment measurements obtained by three different devices in healthy eyes. Biomed Res Int 2014:498080. https://doi.org/10.1155/2014/498080

Article  PubMed  PubMed Central  Google Scholar 

Gurlevik U, Yasar E (2021) Evaluation of the agreement of optical biometry and Scheimpflug corneal topography with different axial lengths. J Fr Ophtalmol 44:1576–1583. https://doi.org/10.1016/j.jfo.2021.06.005

Article  CAS  PubMed  Google Scholar 

Finis D, Ralla B, Karbe M, Borrelli M, Schrader S, Geerling G (2015) Comparison of two different Scheimpflug devices in the detection of keratoconus, regular astigmatism, and healthy corneas. J Ophthalmol 2015:315281. https://doi.org/10.1155/2015/315281

Article  PubMed  PubMed Central  Google Scholar 

Wang X, Wu Q (2013) Investigation of the human anterior segment in normal Chinese subjects using a dual Scheimpflug analyzer. Ophthalmology 120:703–708. https://doi.org/10.1016/j.ophtha.2012.09.034

Article  PubMed  Google Scholar 

Prasad A, Fry K, Hersh PS (2011) Relationship of age and refraction to central corneal thickness. Cornea 30:553–555. https://doi.org/10.1097/ICO.0b013e3181fb880c

Article  PubMed  Google Scholar 

Li C, Zhang J, Yin X, Li J, Cao Y, Lu P (2019) Distribution and related factors of corneal regularity and posterior corneal astigmatism in cataract patients. Clin Ophthalmol 13:1341–1352. https://doi.org/10.2147/OPTH.S212946

Article  PubMed  PubMed Central  Google Scholar 

Masoud M, Livny E, Bahar I (2015) Repeatability and intrasession reproducibility obtained by the Sirius anterior segment analysis system. Eye Contact Lens 41:107–110. https://doi.org/10.1097/ICL.0000000000000074

Article  PubMed  Google Scholar 

Hernández-Camarena JC, Chirinos-Saldaña P, Navas A, Ramirez-Miranda A, de la Mota A, Jimenez-Corona A, Graue-Hernández EO (2014) Repeatability, reproducibility, and agreement between three different Scheimpflug systems in measuring corneal and anterior segment biometry. J Refract Surg 30:616–621. https://doi.org/10.3928/1081597X-20140815-02

Article  PubMed  Google Scholar 

Chen W, McAlinden C, Pesudovs K, Wang Q, Lu F, Feng Y, Chen J, Huang J (2012) Scheimpflug-Placido topographer and optical low-coherence reflectometry biometer: repeatability and agreement. J Cataract Refract Surg 38(9):1626–1632. https://doi.org/10.1016/j.jcrs.2012.04.031

Article  PubMed  Google Scholar 

Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310. https://doi.org/10.1016/S0140-6736(86)90837-8

Article  CAS  PubMed  Google Scholar 

Ryu S, Yoon SH, Jun I, Seo KY, Kim EK, Kim TI (2022) Anterior ocular biometrics using Placido-scanning-slit system, rotating Scheimpflug tomography, and swept-source optical coherence tomography. Korean J Ophthalmol 36:264–273. https://doi.org/10.3341/kjo.2021.0120

Article  PubMed  PubMed Central  Google Scholar 

Baikoff G (2006) Anterior segment OCT and phakic intraocular lenses: A perspective. J Cataract Refract Surg 32:1827–1835. https://doi.org/10.1016/j.jcrs.2006.08.025

Article  PubMed  Google Scholar 

Kim JW, Eom Y, Yoon EG, Choi Y, Song JS, Jeong JW, Park SK, Kim HM (2022) Algorithmic intraocular lens power calculation formula selection by keratometry, anterior chamber depth and axial length. Acta Ophthalmol 100:e701–e709. https://doi.org/10.1111/aos.14956

Article  PubMed  Google Scholar 

Yin S, Guo C, Qiu K, Ng TK, Li Y, Du Y, Chen B, Wang H, Zhang M (2022) Assessment of the influence of keratometry on intraocular lens calculation formulas in long axial length eyes. Int Ophthalmol 42:3211–3219. https://doi.org/10.1007/s10792-022-02322-5

Article  PubMed  Google Scholar 

De Bernardo M, Cione F, Capasso L, Coppola A, Rosa N (2022) A formula to improve the reliability of optical axial length measurement in IOL power calculation. Sci Rep 12:18845. https://doi.org/10.1038/s41598-022-23665-0

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Srivannaboon S, Chirapapaisan C, Chirapapaisan N, Lertsuwanroj B, Chongchareon M (2013) Accuracy of Holladay 2 formula using IOLMaster parameters in the absence of lens thickness value. Graefes Arch Clin Exp Ophthalmol 251:2563–2567. https://doi.org/10.1007/s00417-013-2439-8

Article  PubMed  Google Scholar 

Sorkin N, Achiron A, Abumanhal M, Abulafia A, Cohen E, Gutfreund S, Mandelblum J, Varssano D, Levinger E (2022) Comparison of two new integrated SS-OCT tomography and biometry devices. J Cataract Refract Surg 48:1277–1284. https://doi.org/10.1097/j.jcrs.0000000000000974

Article  PubMed  Google Scholar 

Savini G, Taroni L, Hoffer KJ (2020) Recent developments in intraocular lens power calculation methods-update 2020. Ann Transl Med 8:1553. https://doi.org/10.21037/atm-20-2290

Article  PubMed  PubMed Central  Google Scholar 

Teshigawara T, Meguro A, Mizuki N (2018) Influence of pupil dilation on predicted postoperative refraction and recommended IOL to obtain target postoperative refraction calculated by using third- and fourth-generation calculation formulas. Clin Ophthalmol 12:1913–1919. https://doi.org/10.2147/OPTH.S172846

Article  PubMed  PubMed Central  Google Scholar 

Simon NC, Farooq AV, Zhang MH, Riaz KM (2020) The effect of pharmacological dilation on calculation of targeted and ideal IOL power using multivariable formulas. Ophthalmol Ther 9:1–11. https://doi.org/10.1007/s40123-020-00261-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Berjandy F, Nabovati P, Hashemi H, Yekta A, Ostadimoghaddam H, Sardari S, Khabazkhoob M (2021) Predicting initial base curve of the rigid contact lenses according to Javal keratometry findings in patients with keratoconus. Cont Lens Anterior Eye 44:101340. https://doi.org/10.1016/j.clae.2020.05.009

Article  PubMed  Google Scholar 

Young G, Hall L, Sulley A, Osborn-Lorenz K, Wolffsohn JS (2017) Inter-relationship of soft contact lens diameter, base curve radius, and fit. Optom Vis Sci 94:458–465. https://doi.org/10.1097/OPX.0000000000001048

Article  PubMed  Google Scholar 

Matsuda J, Hieda O, Kinoshita S (2008) Comparison of central corneal thickness measurements by Orbscan II and Pentacam after corneal refractive surgery. Jpn J Ophthalmol 52:245–249. https://doi.org/10.1007/s10384-008-0550-x

Article  PubMed  Google Scholar 

Garcia Marin YF, Alonso-Caneiro D, Vincent SJ, Collins MJ (2022) Anterior segment optical coherence tomography (AS-OCT) image analysis methods and applications: A systematic review. Comput Biol Med 146:105471. https://doi.org/10.1016/j.compbiomed.2022.105471

Article  PubMed  Google Scholar 

Morishige N, Magome K, Ueno A, Matsui TA, Nishida T (2019) Relations among corneal curvature, thickness, and volume in keratoconus as evaluated by anterior segment-optical coherence tomography. Invest Ophthalmol Vis Sci 60:3794–3802. https://doi.org/10.1167/iovs.19-27619

Article  CAS  PubMed  Google Scholar 

Olsen T (2007) Calculation of intraocular lens power: A review. Acta Ophthalmol Scand 85:472–485. https://doi.org/10.1111/j.1600-0420.2007.00879.x

Article  PubMed  Google Scholar 

Huang J, Liao N, Savini G, Bao F, Yu Y, Lu W, Hu Q, Wang Q (2014) Comparison of anterior segment measurements with Scheimpflug/Placido photography-based topography system and IOLMaster partial coherence interferometry in patients with cataracts. J Ophthalmol 2014:540760. https://doi.org/10.1155/2014/540760

Article  PubMed  PubMed Central  Google Scholar 

Chen Y-A, Hirnschall N, Findl O (2011) Evaluation of 2 new optical biometry devices and comparison with the current gold standard biometer. J Cataract Refract Surg 37:513–517. https://doi.org/10.1016/j.jcrs.2010.10.041

Article  CAS  PubMed  Google Scholar 

Wang Q, Savini G, Hoffer KJ, Xu Z, Feng Y, Wen D, Hua Y, Yang F, Pan C, Huang J (2012) A comprehensive assessment of the precision and agreement of anterior corneal power measurements obtained using 8 different devices. PLoS ONE 7:e45607. https://doi.org/10.1371/journal.pone.0045607

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Elbaz U, Barkana Y, Gerber Y, Avni I, Zadok D (2007) Comparison of different techniques of anterior chamber depth and keratometric measurements. Am J Ophthalmol 143:48–53. https://doi.org/10.1016/j.ajo.2006.08.031

Article  PubMed  Google Scholar 

Koranyi G, Lydahl E, Norrby S, Taube M (2002) Anterior chamber depth measurement: a-scan versus optical methods. J Cataract Refract Surg 28:243–247. https://doi.org/10.1016/S0886-3350(01)01039-2

Article  PubMed  Google Scholar 

Obstfeld H (1989) Crystalline lens accommodation and anterior chamber depth. Ophthalmic Physiol Opt 9:36–40. https://doi.org/10.1111/j.1475-1313.1989.tb00802.x

Article  CAS  PubMed  Google Scholar 

Savini G, Carbonelli M, Sbreglia A, Barboni P, Deluigi G, Hoffer KJ (2011) Comparison of anterior segment measurements by 3 Scheimpflug tomographers and 1 Placido corneal topographer. J Cataract Refract Surg 37:1679–1685. https://doi.org/10.1016/j.jcrs.2011.03.055

Article  PubMed  Google Scholar 

Milla M, Piñero DP, Amparo F, Alió JL (2011) Pachymetric measurements with a new Scheimpflug photography-based system: Intraobserver repeatability and agreement with optical coherence tomography pachymetry. J Cataract Refract Surg 37:310–316.

留言 (0)

沒有登入
gif