Exploration of AI-powered DenseNet121 for effective diabetic retinopathy detection

Institute NE (2015) Facts About Diabetic Eye Disease [Internet]. https://nei.nih.gov/health/diabetic/retinopathy. Accessed 6 May 2023

Forouhi NG, Wareham NJ (2010) Epidemiology of diabetes. Medicine 42(12):698–702. https://doi.org/10.1016/j.mpmed.2014.09.007

Article  Google Scholar 

Tabish SA (2007) Is diabetes becoming the biggest epidemic of the twenty- first century. Int J Health Sci 1(2):V–VIII

Google Scholar 

Lin X, Yufeng X, Pan X, Jingya X, Ding Y, Xue S, Xiaoxiao S, Yuezhong R, Fei SP (2020) Global, regional, and national burden and trend of diabetes in 195 countries and territories: an analysis from 1990 to 2025. Sci Rep 10(1):1–11. https://doi.org/10.1038/s41598-020-71908-9

Article  CAS  Google Scholar 

Atre S (2019) The burden of diabetes in India. Lancet Glob Health 7(4):e418. https://doi.org/10.1016/S2214-109X(18)30556-4

Article  PubMed  Google Scholar 

Early Treatment DR Study Research Group (1991) Grading DR from stereoscopic colour fundus photographs - an extension of the modified airlie house classification, ETDRS Report Number 10. Ophthalmology 98(5):786–806. https://doi.org/10.1016/S0161-6420(13)38012-9

Article  Google Scholar 

International Council of Ophthalmology (2017) ICO guidelines for diabetic eye care, San Francisco (CA). International Council of Ophthalmology [Internet]. http://www.icoph.org/ICOGuidelinesforDiabeticEyeCare. Accessed 10 May 2023

Tang MCS, Teoh SS, Ibrahim H (2022) Retinal vessel segmentation from fundus images using DeepLabv3+. In: IEEE 18th international colloquium on signal processing & applications (CSPA-2022). pp 377–381. https://doi.org/10.1109/CSPA55076.2022.9781891

Tang MCS, Teoh SS, Ibrahim H, Embong Z (2021) Neovascularization detection and localization in fundus images using deep learning. Sensors 21(16):5327. https://doi.org/10.3390/s21165327

Article  ADS  PubMed  PubMed Central  Google Scholar 

Khojasteh P, Passos Júnior LA, Carvalho T, Rezende E, Aliahmad B, Papa JP, Kumar DK (2019) Exudate detection in fundus images using deeply-learnable features. Comput Biol Med 104:62–69. https://doi.org/10.1016/j.compbiomed.2018.10

Article  PubMed  Google Scholar 

Zheng R, Liu L, Zhang S, Zheng C, Bunyak F, Xu R, Li B, Sun M (2018) Detection of exudates in fundus photographs with imbalanced learning using conditional generative adversarial network. Biomed Opt Express 9(10):4863–4878. https://doi.org/10.1364/BOE.9.004863

Article  ADS  PubMed  PubMed Central  Google Scholar 

Eftekhari N, Pourreza HR, Masoudi M, Ghiasi-Shirazi K, Saeedi E (2019) Microaneurysm detection in fundus images using a two-step convolutional neural network. Biomed Eng Online 18(1):67. https://doi.org/10.1186/s12938-019-0675-9

Article  PubMed  PubMed Central  Google Scholar 

Choi JY, Yoo TK, Seo JG, Wak JK, Um T, Rim TK (2017) Multicategorical deep learning neural network to classify retinal images: a pilot study employing small database. PLoS ONE 11:e0187336. https://doi.org/10.1371/journal.pone.0187336

Article  CAS  Google Scholar 

Ting DSW, Cheung CYL, Lim G, Tan GSW, Quang ND, Gan A, Hamzah H, Garcia-Franco R, San Yeo LY, Lee SY (2017) Development and validation of a deep learning system for DR and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA 318(22):2211–2223. https://doi.org/10.1001/jama.2017.18152

Article  PubMed  PubMed Central  Google Scholar 

Tang MCS, Teoh SS, Ibrahim H, Embong Z (2022) A deep learning approach for the detection of neovascularization in fundus images using transfer learning. IEEE Access 10:20247–20258. https://doi.org/10.1109/ACCESS.2022.3151644

Article  Google Scholar 

Tang MCS, Teoh SS (2020) Blood vessel segmentation in fundus images using hessian matrix for diabetic retinopathy detection. In: 11th IEEE annual information technology, electronics and mobile communication conference (IEMCON-2020). pp 0728–0733. https://doi.org/10.1109/IEMCON51383.2020.9284931.

Islam KT, Wijewickrema S, Leary SO (2019) Identifying DR from oct images using deep transfer learning with artifificial neural networks. In: IEEE 32nd international symposium on computer-based medical systems (CBMS). pp 281–286. https://doi.org/10.1109/CBMS.2019.00066

Tang MCS, Teoh SS (2023) Brain tumor detection from MRI images based on ResNet18. In: 6th International conference on information systems and computer networks (ISCON-2023). p 1. https://doi.org/10.1109/ISCON57294.2023.10112025

Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 25:1097–1105. https://doi.org/10.1145/3065386

Article  Google Scholar 

University of oxford (2021) Visual geometry group. https://www.robots.ox.ac.uk/~vgg/software/via/, Accessed 25 May 2023

Hacisoftaoglu RE, Karakaya M, Sallam AB (2020) Deep learning frameworks for diabetic retinopathy detection with smartphone-based retinal imaging systems. Pattern Recogn Lett 135:409–417. https://doi.org/10.1016/j.patrec.2020.04.009

Article  ADS  Google Scholar 

He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: IEEE conference on computer vision and pattern recognition, pp 770–778. https://doi.org/10.48550/arXiv.1512.03385

Szegedy C (2015) Going deeper with Convolutions. In: 2015 IEEE conference on computer vision and pattern recognition (CVPR). https://doi.org/10.1109/CVPR.2015.7298594

Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp 4700–4708. https://doi.org/10.48550/arXiv.1608.06993

Kaggle Dataset. Diabetic Retinopathy 224 × 224 (2019 Data). [Available: Diabetic Retinopathy 224 × 224 (2019 Data) | Kaggle] Accessed: 5 Jun 2023

Ur-Rehman M, Khan SH, Abbas Z, Danish Rizvi SM (2019) Classification of DR images based on customised CNN architecture. In Proceedings of the Amity international conference on artifificial intelligence, AICAI, Dubai, United Arab Emirates, pp 244–248. https://doi.org/10.1109/AICAI.2019.8701231

Powers DM (2011) Evaluation: from precision, recall and f-measure to roc, informedness, markedness and correlation. J Mach Learn Technol https://doi.org/10.48550/arXiv.2010.16061

Mohanty C, Mahapatra S, Acharya B, Kokkoras F, Gerogiannis VC, Karamitsos I, Kanavos A (2023) Using deep learning architectures for detection and classification of diabetic retinopathy. Sensors 23(12):5726. https://doi.org/10.3390/s23125726

Article  ADS  PubMed  PubMed Central  Google Scholar 

Abdel Maksoud E, Barakat S, Elmogy M (2022) A computer-aided diagnosis system for detecting various diabetic retinopathy grades based on a hybrid deep learning technique. Med Biol Eng Comput 60:2015–2038

Article  PubMed  Google Scholar 

Rafid AUI, Sanjana S, Munir MB et al (2023) An early-stage diagnosis of diabetic retinopathy based on ensemble framework. SIViP. https://doi.org/10.1007/s11760-023-02796-5

Article  Google Scholar 

Das D, Biswas SK, Bandyopadhyay S (2022) A critical review on diagnosis of diabetic retinopathy using machine learning and deep learning. Multimed Tools Appl 81:25613–25655. https://doi.org/10.1007/s11042-022-12642-4

Article  PubMed  PubMed Central  Google Scholar 

Grauslund J (2022) Diabetic retinopathy screening in the emerging era of artificial intelligence. Diabetologia 65(9):1415–1423. https://doi.org/10.1007/s00125-022-05727-0

Article  PubMed  Google Scholar 

Comments (0)

No login
gif