Muscle deoxygenation during ramp incremental cycle exercise in older adults with type 2 diabetes

Bauer TA, Reusch JEB, Levi M, Regensteiner JG (2007) Skeletal muscle deoxygenation after the onset of moderate exercise suggests slowed microvascular blood flow kinetics in type 2 diabetes. Diabetes Care 30(11):2880–2885

Article  PubMed  Google Scholar 

Behnke BJ, Kindig CA, McDonough P, Poole DC, Sexton WL (2002) Dynamics of microvascular oxygen pressure during rest-contraction transition in skeletal muscle of diabetic rats. Am J Physiol Heart Circ Physiol 283(3):H926-932. https://doi.org/10.1152/ajpheart.00059.2002

Article  CAS  PubMed  Google Scholar 

Boone J, Koppo K, Barstow TJ, Bouckaert J (2009) Pattern of deoxy[Hb+Mb] during ramp cycle exercise: influence of aerobic fitness status. Eur J Appl Physiol 105(6):851–859. https://doi.org/10.1007/s00421-008-0969-2

Article  PubMed  Google Scholar 

Boushel R, Gnaiger E, Schjerling P, Skovbro M, Kraunsoe R, Dela F (2007) Patients with type 2 diabetes have normal mitochondrial function in skeletal muscle. Diabetologia 50(4):790–796. https://doi.org/10.1007/s00125-007-0594-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

DiMenna FJ, Bailey SJ, Jones AM (2010) Influence of body position on muscle deoxy[Hb+Mb] during ramp cycle exercise. Respir Physiol Neurobiol 173(2):138–145. https://doi.org/10.1016/j.resp.2010.07.005

Article  CAS  PubMed  Google Scholar 

Egaña M, Green S (2005) Effect of body tilt on calf muscle performance and blood flow in humans. J Appl Physiol 98(6):2249–2258. https://doi.org/10.1152/japplphysiol.01235.2004

Article  PubMed  Google Scholar 

Egaña M, Green S (2007) Intensity-dependent effect of body tilt angle on calf muscle fatigue in humans. Eur J Appl Physiol 99(1):1–9. https://doi.org/10.1007/s00421-006-0308-4

Article  PubMed  Google Scholar 

Egaña M, O’Riordan D, Warmington SA (2010a) Exercise performance and VO2 kinetics during upright and recumbent high-intensity cycling exercise. Eur J Appl Physiol 110(1):39–47. https://doi.org/10.1007/s00421-010-1466-y

Article  PubMed  Google Scholar 

Egaña M, Ryan K, Warmington SA, Green S (2010b) Effect of body tilt angle on fatigue and EMG activities in lower limbs during cycling. Eur J Appl Physiol 108(4):649–656. https://doi.org/10.1007/s00421-009-1254-8

Article  PubMed  Google Scholar 

Egaña M, Columb D, O’Donnell S (2013) Effect of low recumbent angle on cycling performance, fatigue, and V O(2) kinetics. Med Sci Sports Exerc 45(4):663–673. https://doi.org/10.1249/MSS.0b013e318279a9f2

Article  PubMed  Google Scholar 

Ferrari M, Muthalib M, Quaresima V (2011) The use of near-infrared spectroscopy in understanding skeletal muscle physiology: recent developments. Philos Trans A Math Phys Eng Sci 369(1955):4577–4590. https://doi.org/10.1098/rsta.2011.0230

Article  CAS  PubMed  Google Scholar 

Gildea N, Rocha J, McDermott A, O’Shea D, Green S, Egaña M (2019) Influence of type 2 diabetes on muscle deoxygenation during ramp incremental cycle exercise. Respir Physiol Neurobiol 269:103258. https://doi.org/10.1016/j.resp.2019.103258

Article  CAS  PubMed  Google Scholar 

Gildea N, McDermott A, Rocha J, O’Shea D, Green S, Egaña M (2021a) Time course of changes in V̇o(2peak) and O(2) extraction during ramp cycle exercise following HIIT versus moderate-intensity continuous training in type 2 diabetes. Am J Physiol Regul Integr Comp Physiol 320(5):R683-r696. https://doi.org/10.1152/ajpregu.00318.2020

Article  CAS  PubMed  Google Scholar 

Gildea N, McDermott A, Rocha J, O’Shea D, Green S, Egaña M (2021b) Time-course of V̇o(2) kinetics responses during moderate-intensity exercise subsequent to HIIT versus moderate-intensity continuous training in type 2 diabetes. J Appl Physiol 130(6):1646–1659. https://doi.org/10.1152/japplphysiol.00952.2020

Article  CAS  PubMed  Google Scholar 

Gildea N, Rocha J, O’Shea D, Green S, Egaña M (2021c) Priming exercise accelerates pulmonary oxygen uptake kinetics during “work-to-work” cycle exercise in middle-aged individuals with type 2 diabetes. Eur J Appl Physiol 121(2):409–423. https://doi.org/10.1007/s00421-020-04518-y

Article  CAS  PubMed  Google Scholar 

Gildea N, McDermott A, Rocha J, Crognale D, Nevin A, O’Shea D, Green S, Egaña M (2022) Low-volume HIIT and MICT speed V̇O(2) kinetics during high-intensity “work-to-work” cycling with a similar time-course in type 2 diabetes. J Appl Physiol. https://doi.org/10.1152/japplphysiol.00148.2022

Article  PubMed  Google Scholar 

Gravelle BM, Murias JM, Spencer MD, Paterson DH, Kowalchuk JM (2012) Adjustments of pulmonary O2 uptake and muscle deoxygenation during ramp incremental exercise and constant-load moderate-intensity exercise in young and older adults. J Appl Physiol 113(9):1466–1475. https://doi.org/10.1152/japplphysiol.00884.2011

Article  CAS  PubMed  PubMed Central  Google Scholar 

Green S, Egaña M, Baldi JC, Lamberts R, Regensteiner JG (2015) Cardiovascular control during exercise in type 2 diabetes mellitus. J Diabetes Res 2015:654204. https://doi.org/10.1155/2015/654204

Article  PubMed  PubMed Central  Google Scholar 

Heinonen I, Koga S, Kalliokoski KK, Musch TI, Poole DC (2015) Heterogeneity of muscle blood flow and metabolism: influence of exercise, aging, and disease states. Exerc Sport Sci Rev 43(3):117–124. https://doi.org/10.1249/jes.0000000000000044

Article  PubMed  PubMed Central  Google Scholar 

Iannetta D, Qahtani A, Millet GY, Murias JM (2017) Quadriceps muscles O2 extraction and EMG breakpoints during a ramp incremental test. Front Physiol 8:686. https://doi.org/10.3389/fphys.2017.00686

Article  PubMed  PubMed Central  Google Scholar 

Iannetta D, Murias JM, Keir DA (2019) A Simple method to quantify the V O2 mean response time of ramp-incremental exercise. Med Sci Sports Exerc 51(5):1080–1086. https://doi.org/10.1249/mss.0000000000001880

Article  PubMed  Google Scholar 

Inglis EC, Iannetta D, Murias JM (2017) The plateau in the NIRS-derived [HHb] signal near the end of a ramp incremental test does not indicate the upper limit of O2 extraction in the vastus lateralis. Am J Physiol Regul Integr Comp Physiol 313(6):R723-r729. https://doi.org/10.1152/ajpregu.00261.2017

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jones AM, Berger NJ, Wilkerson DP, Roberts CL (2006) Effects of “priming” exercise on pulmonary O2 uptake and muscle deoxygenation kinetics during heavy-intensity cycle exercise in the supine and upright positions. J Appl Physiol 101(5):1432–1441. https://doi.org/10.1152/japplphysiol.00436.2006

Article  PubMed  Google Scholar 

Keir DA, Fontana FY, Robertson TC, Murias JM, Paterson DH, Kowalchuk JM, Pogliaghi S (2015) Exercise intensity thresholds: identifying the boundaries of sustainable performance. Med Sci Sports Exerc 47(9):1932–1940. https://doi.org/10.1249/mss.0000000000000613

Article  PubMed  Google Scholar 

Kiely C, O’Connor E, O’Shea D, Green S, Egaña M (2014) Hemodynamic responses during graded and constant-load plantar flexion exercise in middle-aged men and women with type 2 diabetes. J Appl Physiol 117(7):755–764. https://doi.org/10.1152/japplphysiol.00555.2014

Article  Google Scholar 

Kiely C, Rocha J, O’Connor E, O’Shea D, Green S, Egaña M (2015) Influence of menopause and Type 2 diabetes on pulmonary oxygen uptake kinetics and peak exercise performance during cycling. Am J Physiol Regul Integr Comp Physiol 309(8):R875-883. https://doi.org/10.1152/ajpregu.00258.2015

Article  CAS  PubMed  Google Scholar 

Kingwell BA, Formosa M, Muhlmann M, Bradley SJ, McConell GK (2003) Type 2 diabetic individuals have impaired leg blood flow responses to exercise: role of endothelium-dependent vasodilation. Diabetes Care 26(3):899–904

Article  PubMed  Google Scholar 

Koga S, Poole DC, Ferreira LF, Whipp BJ, Kondo N, Saitoh T, Ohmae E, Barstow TJ (2007) Spatial heterogeneity of quadriceps muscle deoxygenation kinetics during cycle exercise. J Appl Physiol 103(6):2049–2056. https://doi.org/10.1152/japplphysiol.00627.2007

Article  PubMed  Google Scholar 

Mac Ananey O, Malone J, Warmington S, O’Shea D, Green S, Egaña M (2011) Cardiac output is not related to the slowed o2 uptake kinetics in type 2 diabetes. Med Sci Sports Exerc 43(6):935–942. https://doi.org/10.1249/MSS.0b013e3182061cdb

Article  PubMed  Google Scholar 

MacAnaney O, Reilly H, O’Shea D, Egaña M, Green S (2011) Effect of type 2 diabetes on the dynamic response characteristics of leg vascular conductance during exercise. Diab Vasc Dis Res 8(1):12–21. https://doi.org/10.1177/1479164110389625

Article  PubMed  Google Scholar 

Marin P, Andersson B, Krotkiewski M, Bjorntorp P (1994) Muscle fiber composition and capillary density in women and men with NIDDM. Diabetes Care 17(5):382–386

Article  CAS  PubMed  Google Scholar 

O’Connor E, Kiely C, O’Shea D, Green S, Egaña M (2012) Similar level of impairment in exercise performance and oxygen uptake kinetics in middle-aged men and women with type 2 diabetes. Am J Physiol Regul Integr Comp Physiol 303(1):R70-76. https://doi.org/10.1152/ajpregu.00012.2012

Article  CAS  PubMed  Google Scholar 

O’Connor E, Green S, Kiely C, O’Shea D, Egaña M (2015) Differential effects of age and type 2 diabetes on dynamic vs. peak response of pulmonary oxygen uptake during exercise. J Appl Physiol 118:1031–1039. https://doi.org/10.1152/japplphysiol.01040.2014

Article  CAS  PubMed  Google Scholar 

Okushima D, Poole DC, Rossiter HB, Barstow TJ, Kondo N, Ohmae E, Koga S (2015) Muscle deoxygenation in the quadriceps during ramp incremental cycling: Deep vs. superficial heterogeneity. J Appl Physiol 119:1313–1319.

留言 (0)

沒有登入
gif