Glycoprotein 2 as a gut gate keeper for mucosal equilibrium between inflammation and immunity

Okumura R, Kurakawa T, Nakano T, Kayama H, Kinoshita M, Motooka D, Gotoh K, Kimura T, Kamiyama N, Kusu T, Ueda Y, Wu H, Iijima H, Barman S, Osawa H, Matsuno H, Nishimura J, Ohba Y, Nakamura S et al (2016) Lypd8 promotes the segregation of flagellated microbiota and colonic epithelia. Nature 532:117–121

Article  CAS  PubMed  Google Scholar 

Pott J, Hornef M (2012) Innate immune signalling at the intestinal epithelium in homeostasis and disease. EMBO Rep 13:684–698

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kurashima Y, Kiyono H (2017) Mucosal ecological network of epithelium and immune cells for gut homeostasis and tissue healing. Annu Rev Immunol 35:119–147

Article  CAS  PubMed  Google Scholar 

Kamioka M, Goto Y, Nakamura K, Yokoi Y, Sugimoto R, Ohira S, Kurashima Y, Umemoto S, Sato S, Kunisawa J, Takahashi Y, Domino SE, Renauld JC, Nakae S, Iwakura Y, Ernst PB, Ayabe T, Kiyono H (2022) Intestinal commensal microbiota and cytokines regulate Fut2(+) Paneth cells for gut defense. Proc Natl Acad Sci USA 119(3):e2115230119

Yeh TC, Wilson AC, Irwin DM (1993) Evolution of rodent lysozymes: isolation and sequence of the rat lysozyme genes. Mol Phylogenet Evol 2:65–75

Article  CAS  PubMed  Google Scholar 

Russell AB, LeRoux M, Hathazi K, Agnello DM, Ishikawa T, Wiggins PA, Wai SN, Mougous JD (2013) Diverse type VI secretion phospholipases are functionally plastic antibacterial effectors. Nature 496:508–512

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mukherjee S, Zheng H, Derebe MG, Callenberg KM, Partch CL, Rollins D, Propheter DC, Rizo J, Grabe M, Jiang Q-X, Hooper LV (2014) Antibacterial membrane attack by a pore-forming intestinal C-type lectin. Nature 505:103–107

Article  PubMed  Google Scholar 

Hand TW, Reboldi A (2021) Production and function of immunoglobulin A. Ann Rev Immunol 39:695–718

Article  CAS  Google Scholar 

Zhang Z, Tanaka I, Pan Z, Ernst PB, Kiyono H, Kurashima Y (2022) Intestinal homeostasis and inflammation: gut microbiota at the crossroads of pancreas-intestinal barrier axis. Eur J Immunol 52:1035–1046

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jia W, Xie G, Jia W (2018) Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat Rev Gastroenterol Hepatol 15:111–128

Article  CAS  PubMed  Google Scholar 

Konturek SJ, Zabielski R, Konturek JW, Czarnecki J (2003) Neuroendocrinology of the pancreas; role of brain-gut axis in pancreatic secretion. Eur J Pharmacol 481:1–14

Article  CAS  PubMed  Google Scholar 

Kurashima Y, Kigoshi T, Murasaki S, Arai F, Shimada K, Seki N, Kim YG, Hase K, Ohno H, Kawano K, Ashida H, Suzuki T, Morimoto M, Saito Y, Sasou A, Goda Y, Yuki Y, Inagaki Y, Iijima H et al (2021) Pancreatic glycoprotein 2 is a first line of defense for mucosal protection in intestinal inflammation. Nat Commun 12:1067

Article  CAS  PubMed  PubMed Central  Google Scholar 

Teratani T, Mikami Y, Nakamoto N, Suzuki T, Harada Y, Okabayashi K, Hagihara Y, Taniki N, Kohno K, Shibata S, Miyamoto K, Ishigame H, Chu PS, Sujino T, Suda W, Hattori M, Matsui M, Okada T, Okano H et al (2020) The liver-brain-gut neural arc maintains the T(reg) cell niche in the gut. Nature 585:591–596

Article  CAS  PubMed  Google Scholar 

Cai J, Sun L, Gonzalez FJ (2022) Gut microbiota-derived bile acids in intestinal immunity, inflammation, and tumorigenesis. Cell Host & Microbe 30:289–300

Article  CAS  Google Scholar 

Doyle CJ, Yancey K, Pitt HA, Wang M, Bemis K, Yip-Schneider MT, Sherman ST, Lillemoe KD, Goggins MD, Schmidt CM (2012) The proteome of normal pancreatic juice. Pancreas 41:186–194

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ishimoto Y, Yamada K, Yamamoto S, Ono T, Notoya M, Hanasaki K (2003) Group V and X secretory phospholipase A(2)s-induced modification of high-density lipoprotein linked to the reduction of its antiatherogenic functions. Biochim Biophys Acta 1642:129–138

Article  CAS  PubMed  Google Scholar 

Shin JH, Seeley RJ (2019) Reg3 proteins as gut hormones? Endocrinology 160:1506–1514

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chairatana P, Chu H, Castillo PA, Shen B, Bevins CL, Nolan EM (2016) Proteolysis triggers self-assembly and unmasks innate immune function of a human alpha-defensin peptide. Chem Sci 7:1738–1752

Article  CAS  PubMed  Google Scholar 

Nishiyama H, Nagai T, Kudo M, Okazaki Y, Azuma Y, Watanabe T, Goto S, Ogata H, Sakurai T (2018) Supplementation of pancreatic digestive enzymes alters the composition of intestinal microbiota in mice. Biochem Biophys Res Commun 495:273–279

Article  CAS  PubMed  Google Scholar 

Mukherjee S, Partch CL, Lehotzky RE, Whitham CV, Chu H, Bevins CL, Gardner KH, Hooper LV (2009) Regulation of C-type lectin antimicrobial activity by a flexible N-terminal prosegment. J Biol Chem 284:4881–4888

Article  CAS  PubMed  PubMed Central  Google Scholar 

MacDonald RJ, Ronzio RA (1972) Comparative analysis of zymogen granule membrane polypeptides. Biochem Biophys Res Commun 49:377–382

Article  CAS  PubMed  Google Scholar 

Hoops TC, Ivanov I, Cui Z, Colomer-Gould V, Rindler MJ (1993) Incorporation of the pancreatic membrane protein GP-2 into secretory granules in exocrine but not endocrine cells. J Biol Chem 268:25694–25705

Article  CAS  PubMed  Google Scholar 

Merz S, Breunig M, Melzer MK, Heller S, Wiedenmann S, Seufferlein T, Meier M, Kruger J, Mulaw MA, Hohwieler M, Kleger A (2023) Single-cell profiling of GP2-enriched pancreatic progenitors to simultaneously create acinar, ductal, and endocrine organoids. Theranostics 13:1949–1973

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ronzio RA, Kronquist KE, Lewis DS, MacDonald RJ, Mohrlok SH, O’Donnell JJ Jr (1978) Glycoprotein synthesis in the adult rat pancreas. IV. Subcellular distribution of membrane glycoproteins. Biochim Biophys Acta 508:65–84

Article  CAS  PubMed  Google Scholar 

Fukuoka S (1994) Analysis of ZAPs, zymogen granule membrane associated proteins, in the regulated exocytosis of the pancreas. Biosci Biotechnol Biochem 58:1282–1285

Article  CAS  PubMed  Google Scholar 

Terahara K, Yoshida M, Igarashi O, Nochi T, Pontes GS, Hase K, Ohno H, Kurokawa S, Mejima M, Takayama N, Yuki Y, Lowe AW, Kiyono H (2008) Comprehensive gene expression profiling of Peyer’s patch M cells, villous M-like cells, and intestinal epithelial cells. J Immunol 180:7840–7846

Article  CAS  PubMed  Google Scholar 

Hase K, Kawano K, Nochi T, Pontes GS, Fukuda S, Ebisawa M, Kadokura K, Tobe T, Fujimura Y, Kawano S, Yabashi A, Waguri S, Nakato G, Kimura S, Murakami T, Iimura M, Hamura K, Fukuoka S, Lowe AW et al (2009) Uptake through glycoprotein 2 of FimH(+) bacteria by M cells initiates mucosal immune response. Nature 462:226–230

Article  CAS  PubMed  Google Scholar 

Roggenbuck D, Goihl A, Sowa M, Lopens S, Rodiger S, Schierack P, Conrad K, Sommer U, Johrens K, Grutzmann R, Reinhold D, Laass MW (2023) Human glycoprotein-2 expressed in Brunner glands — a putative autoimmune target and link between Crohn’s and coeliac disease. Clin Immunol 247:109214

Article  CAS  PubMed  Google Scholar 

Derer S, Brethack AK, Pietsch C, Jendrek ST, Nitzsche T, Bokemeyer A, Hov JR, Schaffler H, Bettenworth D, Grassl GA, Sina C (2020) Inflammatory bowel disease-associated GP2 autoantibodies inhibit mucosal immune response to adherent-invasive bacteria. Inflamm Bowel Dis 26:1856–1868

Article  PubMed  Google Scholar 

Fukuoka S (2000) Molecular cloning and sequences of cDNAs encoding alpha (large) and beta (small) isoforms of human pancreatic zymogen granule membrane-associated protein GP2. Biochim Biophys Acta 1491:376–380

Article  CAS  PubMed  Google Scholar 

Rober N, Noss L, Goihl A, Reinhold D, Jahn J, de Laffolie J, Johannes W, Flemming GM, Roggenbuck D, Conrad K, Laass MW (2017) Autoantibodies against glycoprotein 2 isoforms in pediatric patients with inflammatory bowel disease. Inflamm Bowel Dis 23:1624–1636

Article  PubMed  Google Scholar 

Bork P, Sander C (1992) A large domain common to sperm receptors (Zp2 and Zp3) and TGF-beta type III receptor. FEBS Lett 300:237–240

Article  CAS  PubMed  Google Scholar 

Li KJ, Siao SC, Wu CH, Shen CY, Wu TH, Tsai CY, Hsieh SC, Yu CL (2014) EGF receptor-dependent mechanism may be involved in the Tamm-Horsfall glycoprotein-enhanced PMN phagocytosis via activating Rho family and MAPK signaling pathway. Molecules 19:1328–1343

Article  PubMed  PubMed Central  Google Scholar 

Kolenda R, Burdukiewicz M, Schiebel J, Rodiger S, Sauer L, Szabo I, Orlowska A, Weinreich J, Nitschke J, Bohm A, Gerber U, Roggenbuck D, Schierack P (2018) Adhesion of Salmonella to pancreatic secretory granule membrane major glycoprotein GP2 of human and porcine origin depends on FimH sequence variation. Front Microbiol 9:1905

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif