Altered DNA methylation within DNMT3A, AHRR, LTA/TNF loci mediates the effect of smoking on inflammatory bowel disease

Zhao, M., Gönczi, L., Lakatos, P. L. & Burisch, J. The burden of inflammatory bowel disease in Europe in 2020. J. Crohns Colitis 15, 1573–1587 (2021).

Article  PubMed  Google Scholar 

Srour, B. et al. Ultra-processed foods and human health: from epidemiological evidence to mechanistic insights. Lancet Gastroenterol. Hepatol. 7, 1128–1140 (2022).

Article  PubMed  Google Scholar 

AlQasrawi, D., Qasem, A. & Naser, S. A. Divergent effect of cigarette smoke on innate immunity in inflammatory bowel disease: a nicotine-infection interaction. Int J. Mol. Sci. 21, 5801 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Higuchi, L. M. et al. A prospective study of cigarette smoking and the risk of inflammatory bowel disease in women. Am. J. Gastroenterol. 107, 1399–1406 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Papoutsopoulou, S., Satsangi, J., Campbell, B. J. & Probert, C. S. Review article: impact of cigarette smoking on intestinal inflammation-direct and indirect mechanisms. Aliment Pharm. Ther. 51, 1268–1285 (2020).

Article  CAS  Google Scholar 

Davey Smith, G. & Hemani, G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum. Mol. Genet. 23, R89–R98 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bojesen, S. E., Timpson, N., Relton, C., Davey Smith, G. & Nordestgaard, B. G. AHRR (cg05575921) hypomethylation marks smoking behaviour, morbidity and mortality. Thorax 72, 646–653 (2017).

Article  PubMed  Google Scholar 

Gao, X., Jia, M., Zhang, Y., Breitling, L. P. & Brenner, H. DNA methylation changes of whole blood cells in response to active smoking exposure in adults: a systematic review of DNA methylation studies. Clin. Epigenetics. 7, 113 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Heikkinen, A., Bollepalli, S. & Ollikainen, M. The potential of DNA methylation as a biomarker for obesity and smoking. J. Intern Med. 292, 390–408 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Joustra, V. et al. Systematic review and meta-analysis of peripheral blood dna methylation studies in inflammatory bowel disease. J. Crohns Colitis, 17, 185–198 (2022).

Kalla, R. et al. Analysis of systemic epigenetic alterations in inflammatory bowel disease: defining geographical, genetic, and immune-inflammatory influences on the circulating methylome. J. Crohns. Colitis, 17, 170–184 (2023).

Ventham, N. T. et al. Integrative epigenome-wide analysis demonstrates that DNA methylation may mediate genetic risk in inflammatory bowel disease. Nat. Commun. 7, 13507 (2016).

Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

Wang, T., Xia, P. & Su, P. High-dimensional DNA methylation mediates the effect of smoking on Crohn’s Disease. Front Genet 13, 831885 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Min, J. L. et al. Genomic and phenotypic insights from an atlas of genetic effects on DNA methylation. Nat. Genet. 53, 1311–1321 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Lange, K. M. et al. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nat. Genet. 49, 256–261 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Ananthakrishnan, A. N. Epidemiology and risk factors for IBD. Nat. Rev. Gastroenterol. Hepatol. 12, 205–217 (2015).

Article  PubMed  Google Scholar 

Mowat, C. et al. Mercaptopurine versus placebo to prevent recurrence of Crohn’s disease after surgical resection (TOPPIC): a multicentre, double-blind, randomised controlled trial. Lancet Gastroenterol. Hepatol. 1, 273–282 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Höie, O. et al. Ulcerative colitis: patient characteristics may predict 10-yr disease recurrence in a European-wide population-based cohort. Am. J. Gastroenterol. 102, 1692–1701 (2007).

Article  PubMed  Google Scholar 

Pedersen, K. M. et al. Risk of ulcerative colitis and Crohn’s disease in smokers lacks causal evidence. Eur. J. Epidemiol. 37, 735–745 (2022).

Article  CAS  PubMed  Google Scholar 

Georgiou, A. N., Ntritsos, G., Papadimitriou, N., Dimou, N. & Evangelou, E. Cigarette smoking, coffee consumption, alcohol intake, and risk of crohn’s disease and ulcerative colitis: a mendelian randomization study. Inflamm. Bowel Dis. 27, 162–168 (2021).

Article  PubMed  Google Scholar 

Jones, D. P. et al. Exploring the effects of cigarette smoking on inflammatory bowel disease using mendelian randomization. Crohns Colitis 360. 2, otaa018 (2020).

Article  PubMed  PubMed Central  Google Scholar 

McCartney, D. L. et al. Epigenetic prediction of complex traits and death. Genome Biol. 19, 136 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Piovani, D. et al. Environmental risk factors for inflammatory bowel diseases: an umbrella review of meta-analyses. Gastroenterology 157, 647–659.e644 (2019).

Article  PubMed  Google Scholar 

Cosnes, J., Beaugerie, L., Carbonnel, F. & Gendre, J. P. Smoking cessation and the course of Crohn’s disease: an intervention study. Gastroenterology 120, 1093–1099 (2001).

Article  CAS  PubMed  Google Scholar 

Beaugerie, L. et al. Impact of cessation of smoking on the course of ulcerative colitis. Am. J. Gastroenterol. 96, 2113–2116 (2001).

Article  CAS  PubMed  Google Scholar 

Guida, F. et al. Dynamics of smoking-induced genome-wide methylation changes with time since smoking cessation. Hum. Mol. Genet. 24, 2349–2359 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Joehanes, R. et al. Epigenetic signatures of cigarette smoking. Circ. Cardiovasc Genet. 9, 436–447 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, X. et al. Epigenomic profiling of isolated blood cell types reveals highly specific B cell smoking signatures and links to disease risk. Clin. Epigenetics 15, 90 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Abraham, C. & Cho, J. H. Inflammatory bowel disease. N. Engl. J. Med 361, 2066–2078 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Parkes, G. C., Whelan, K. & Lindsay, J. O. Smoking in inflammatory bowel disease: impact on disease course and insights into the aetiology of its effect. J. Crohns Colitis 8, 717–725 (2014).

Article  PubMed  Google Scholar 

Juneja, M. et al. Geriatric inflammatory bowel disease: phenotypic presentation, treatment patterns, nutritional status, outcomes, and comorbidity. Dig. Dis. Sci. 57, 2408–2415 (2012).

Article  PubMed  Google Scholar 

Mak, J. W. Y. et al. Epidemiology and natural history of elderly-onset inflammatory bowel disease: results from a territory-wide hong kong ibd registry. J. Crohns Colitis 15, 401–408 (2021).

Article  PubMed  Google Scholar 

Singh, S., Boland, B. S., Jess, T. & Moore, A. A. Management of inflammatory bowel diseases in older adults. Lancet Gastroenterol. Hepatol. 8, 368–382 (2023).

Article  PubMed  Google Scholar 

Biedermann, L. et al. Smoking cessation alters intestinal microbiota: insights from quantitative investigations on human fecal samples using FISH. Inflamm. Bowel Dis. 20, 1496–1501 (2014).

Article  PubMed  Google Scholar 

Zong, D., Liu, X., Li, J., Ouyang, R. & Chen, P. The role of cigarette smoke-induced epigenetic alterations in inflammation. Epigenetics Chromatin 12, 65 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Somineni, H. K. et al. Blood-derived DNA methylation signatures of crohn’s disease and severity of intestinal inflammation. Gastroenterology 156, 2254–2265 (2019).

Article  CAS  PubMed  Google Scholar 

Franke, A. et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat. Genet 42, 1118–1125 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fazio, A. et al. DNA methyltransferase 3A controls intestinal epithelial barrier function and regeneration in the colon. Nat. Commun. 13, 6266 (2022).

Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

Torres, J. et al. Serum biomarkers identify patients who will develop inflammatory bowel diseases up to 5 years before diagnosis. Gastroenterology 159, 96–104 (2020).

Article  CAS 

留言 (0)

沒有登入
gif