Exposure levels and target attainment of piperacillin/tazobactam in adult patients admitted to the intensive care unit: a prospective observational study

MacArthur RD, Miller M, Albertson T, et al. Adequacy of early empiric antibiotic treatment and survival in severe sepsis: experience from the MONARCS trial. Clin Infect Dis 2004; 38: 284–8. https://doi.org/10.1086/379825

Article  PubMed  Google Scholar 

Evans L, Rhodes A, Alhazzani W, et al. Executive summary: Surviving Sepsis Campaign: international guidelines for the management of sepsis and septic shock 2021. Crit Care Med 2021; 49: 1974–82. https://doi.org/10.1097/ccm.0000000000005357

Article  PubMed  Google Scholar 

Kollef MH, Shorr AF, Bassetti M, et al. Timing of antibiotic therapy in the ICU. Crit Care 2021; 25: 360. https://doi.org/10.1186/s13054-021-03787-z

Article  PubMed  PubMed Central  Google Scholar 

Craig WA. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis 1998; 26: 1–12. https://doi.org/10.1086/516284

Article  CAS  PubMed  Google Scholar 

Abdul-Aziz MH, Alffenaar JW, Bassetti M, et al. Antimicrobial therapeutic drug monitoring in critically ill adult patients: a position paper. Intensive Care Med 2020; 46: 1127–53. https://doi.org/10.1007/s00134-020-06050-1

Article  PubMed  PubMed Central  Google Scholar 

Guilhaumou R, Benaboud S, Bennis Y, et al. Optimization of the treatment with beta-lactam antibiotics in critically ill patients—guidelines from the French Society of Pharmacology and Therapeutics (Société Française de Pharmacologie et Thérapeutique—SFPT) and the French Society of Anaesthesia and Intensive Care Medicine (Société Française d’Anesthésie et Réanimation—SFAR). Crit Care 2019; 23: 104. https://doi.org/10.1186/s13054-019-2378-9

Article  PubMed  PubMed Central  Google Scholar 

Sumi CD, Heffernan AJ, Lipman J, Roberts JA, Sime FB. What antibiotic exposures are required to suppress the emergence of resistance for gram-negative bacteria? A systematic review. Clin Pharmacokinet 2019; 58: 1407–43. https://doi.org/10.1007/s40262-019-00791-z

Article  PubMed  Google Scholar 

El-Haffaf I, Caissy JA, Marsot A. Piperacillin-tazobactam in intensive care units: a review of population pharmacokinetic analyses. Clin Pharmacokinet 2021; 60: 855–75. https://doi.org/10.1007/s40262-021-01013-1

Article  CAS  PubMed  Google Scholar 

Fratoni AJ, Nicolau DP, Kuti JL. A guide to therapeutic drug monitoring of β-lactam antibiotics. Pharmacotherapy 2021; 41: 220–33. https://doi.org/10.1002/phar.2505

Article  CAS  PubMed  Google Scholar 

Chen IH, Nicolau DP. Augmented renal clearance and how to augment antibiotic dosing. Antibiotics (Basel) 2020; 9: 393. https://doi.org/10.3390/antibiotics9070393

Article  CAS  PubMed  Google Scholar 

Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med 1985; 13: 818–29.

Article  CAS  PubMed  Google Scholar 

Ferreira FL, Bota DP, Bross A, Mélot C, Vincent JL. Serial evaluation of the SOFA score to predict outcome in critically ill patients. JAMA 2001; 286: 1754–8. https://doi.org/10.1001/jama.286.14.1754

Article  CAS  PubMed  Google Scholar 

Marik PE, Taeb AM. SIRS, qSOFA and new sepsis definition. J Thorac Dis 2017; 9: 943–5. https://doi.org/10.21037/jtd.2017.03.125

Article  PubMed  PubMed Central  Google Scholar 

Barletta JF, Mangram AJ, Byrne M, et al. Identifying augmented renal clearance in trauma patients: validation of the augmented renal clearance in trauma intensive care scoring system. J Trauma Acute Care Surg 2017; 82: 665–71. https://doi.org/10.1097/ta.0000000000001387

Article  PubMed  Google Scholar 

Bergeron N, Dubois MJ, Dumont M, Dial S, Skrobik Y. Intensive care delirium screening checklist: evaluation of a new screening tool. Intensive Care Med 2001; 27: 859–64. https://doi.org/10.1007/s001340100909

Article  CAS  PubMed  Google Scholar 

Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 2016; 315: 801–10. https://doi.org/10.1001/jama.2016.0287

Article  CAS  PubMed  PubMed Central  Google Scholar 

Legrand T, Vodovar D, Tournier N, Khoudour N, Hulin A. Simultaneous determination of eight β-lactam antibiotics, amoxicillin, cefazolin, cefepime, cefotaxime, ceftazidime, cloxacillin, oxacillin, and piperacillin, in human plasma by using ultra-high-performance liquid chromatography with ultraviolet detection. Antimicrob Agents Chemother 2016; 60: 4734–42. https://doi.org/10.1128/aac.00176-16

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing, 32nd edition; 2022. Available from URL: https://clsi.org/standards/products/elearning/education/using-m100-online-learning-performance-standards-for-antimicrobial-susceptibility-testing/ (accessed November 2023).

Zhanel GG, Adam HJ, Baxter MR, et al. 42936 pathogens from Canadian hospitals: 10 years of results (2007–16) from the CANWARD surveillance study. J Antimicrob Chemother 2019; 74: iv5–21. https://doi.org/10.1093/jac/dkz283

Beumier M, Casu GS, Hites M, et al. Elevated β-lactam concentrations associated with neurological deterioration in ICU septic patients. Minerva Anestesiol 2015; 81: 497–506.

CAS  PubMed  Google Scholar 

Colman S, Stove V, De Waele JJ, Verstraete AG. Measuring unbound versus total piperacillin concentrations in plasma of critically ill patients: methodological issues and relevance. Ther Drug Monit 2019; 41: 325–30. https://doi.org/10.1097/ftd.0000000000000602

Article  CAS  PubMed  Google Scholar 

Schießer S, Hitzenbichler F, Kees MG, et al. Measurement of free plasma concentrations of beta-lactam antibiotics: an applicability study in intensive care unit patients. Ther Drug Monit 2021; 43: 264–70. https://doi.org/10.1097/ftd.0000000000000827

Article  PubMed  Google Scholar 

Briscoe SE, McWhinney BC, Lipman J, Roberts JA, Ungerer JP. A method for determining the free (unbound) concentration of ten beta-lactam antibiotics in human plasma using high performance liquid chromatography with ultraviolet detection. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 907: 178–84. https://doi.org/10.1016/j.jchromb.2012.09.016

Article  CAS  PubMed  Google Scholar 

Roberts JA, Paul SK, Akova M, et al. DALI: defining antibiotic levels in intensive care unit patients: are current β-lactam antibiotic doses sufficient for critically ill patients? Clin Infect Dis 2014; 58: 1072–83. https://doi.org/10.1093/cid/ciu027

Article  CAS  PubMed  Google Scholar 

Udy AA, Lipman J, Jarrett P, et al. Are standard doses of piperacillin sufficient for critically ill patients with augmented creatinine clearance? Crit Care 2015; 19: 28. https://doi.org/10.1186/s13054-015-0750-y

Article  PubMed  PubMed Central  Google Scholar 

Zander J, Döbbeler G, Nagel D, et al. Piperacillin concentration in relation to therapeutic range in critically ill patients—a prospective observational study. Crit Care 2016; 20: 79. https://doi.org/10.1186/s13054-016-1255-z

Article  PubMed  PubMed Central  Google Scholar 

Smekal AK, Furebring M, Eliasson E, Lipcsey M. Low attainment to PK/PD-targets for β-lactams in a multi-center study on the first 72 h of treatment in ICU patients. Sci Rep 2022; 12: 21891. https://doi.org/10.1038/s41598-022-25967-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Conil JM, Georges B, Mimoz O, et al. Influence of renal function on trough serum concentrations of piperacillin in intensive care unit patients. Intensive Care Med 2006; 32: 2063–6. https://doi.org/10.1007/s00134-006-0421-1

Article  CAS  PubMed  Google Scholar 

Carlier M, Carrette S, Roberts JA, et al. Meropenem and piperacillin/tazobactam prescribing in critically ill patients: does augmented renal clearance affect pharmacokinetic/pharmacodynamic target attainment when extended infusions are used? Crit Care 2013; 17: R84. https://doi.org/10.1186/cc12705

Article  PubMed  PubMed Central  Google Scholar 

Quinton MC, Bodeau S, Kontar L, et al. Neurotoxic concentration of piperacillin during continuous infusion in critically ill patients. Antimicrob Agents Chemother 2017; 61: e00654–17. https://doi.org/10.1128/aac.00654-17

Article  CAS  PubMed  PubMed Central  Google Scholar 

Imani S, Buscher H, Marriott D, Gentili S, Sandaradura I. Too much of a good thing: a retrospective study of β-lactam concentration–toxicity relationships. J Antimicrob Chemother 2017; 72: 2891–7. https://doi.org/10.1093/jac/dkx209

Article  CAS  PubMed  Google Scholar 

Blot SI, Pea F, Lipman J. The effect of pathophysiology on pharmacokinetics in the critically ill patient—concepts appraised by the example of antimicrobial agents. Adv Drug Deliv Rev 2014; 77: 3–11. https://doi.org/10.1016/j.addr.2014.07.006

Article  CAS  PubMed  Google Scholar 

Roberts JA, Lipman J. Pharmacokinetic issues for antibiotics in the critically ill patient. Crit Care Med 2009; 37: 840–51. https://doi.org/10.1097/ccm.0b013e3181961bff

Article  CAS  PubMed  Google Scholar 

Brunetti L, Poustchi S, Cunningham D, et al. Clinical and economic impact of empirical extended-infusion piperacillin-tazobactam in a community medical center. Ann Pharmacother 2015; 49: 754–60. https://doi.org/10.1177/1060028015579427

Article  PubMed 

留言 (0)

沒有登入
gif