Expression of molecular markers and synergistic anticancer effects of chemotherapy with antimicrobial peptides on glioblastoma cells

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249. https://doi.org/10.3322/caac.21660

Article  PubMed  Google Scholar 

Hanif F, Muzaffar K, Perveen K, Malhi SM, Simjee SU (2017) Glioblastoma multiforme: a review of its epidemiology and pathogenesis through clinical presentation and treatment. Asian Pac J Cancer Prev 18(1):3–9

PubMed  PubMed Central  Google Scholar 

Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, Hawkins C, Ng HK, Pfister SM, Reifenberger G, Soffietti R, von Deimling A, Ellison DW (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131(6):803–820. https://doi.org/10.1007/s00401-016-1545-1

Article  PubMed  Google Scholar 

Jeon J, Lee S, Kim H, Kang H, Youn HS, Jo S, Youn BH, Kim HY (2021) Revisiting platinum-based anticancer drugs to overcome gliomas. Int J Mol Sci 22(10):5111

Article  PubMed  PubMed Central  CAS  Google Scholar 

Leonard A, Wolff JE (2013) Etoposide improves survival in high-grade glioma: a meta-analysis. Anticancer Res 33(8):3307–3315

PubMed  CAS  Google Scholar 

Abou-Antoun TJ, Hale JS, Lathia JD, Dombrowski SM (2017) Brain cancer stem cells in adults and children: cell biology and therapeutic implications. Neurotherapeutics 14:372–384. https://doi.org/10.1007/s13311-017-0524-0

Article  PubMed  PubMed Central  Google Scholar 

Olivier Ch, Oliver L, Lalier L, Vallette FM (2021) Drug resistance in glioblastoma: the two faces of oxidative stress. Front Mol Biosci 7:620677. https://doi.org/10.3389/fmolb.2020.620677

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cancer Genome Atlas Research Network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:1061–1068. https://doi.org/10.1038/nature07385

Article  CAS  Google Scholar 

Zhao Z, Zhang KN, Wang Q, Li G, Zeng F, Zhang Y, Wu F, Chai R, Wang Z, Zhang C, Zhang W, Bao Z, Jiang T (2021) Chinese Glioma Genome Atlas (CGGA): a comprehensive resource with functional genomic data for Chinese glioma patients. Genom Proteom Bioinf 19(1):1–12. https://doi.org/10.1016/j.gpb.2020.10.005

Article  CAS  Google Scholar 

Zhang P, Xia Q, Liu L, Li S, Dong L (2020) Current opinion on molecular characterization for GBM classification in guiding clinical diagnosis, prognosis, and therapy. Front Mol Biosci 7:562798. https://doi.org/10.3389/fmolb.2020.562798

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ye G, Wu H, Huang J, Huang J, Wang W, Ge K, Li G, Zhong J, Huang Q (2020) LAMP2: a major update of the database linking antimicrobial peptides. Database. https://doi.org/10.1093/database/baaa061

Article  PubMed  PubMed Central  Google Scholar 

Büyükkiraz ME, Kesmen Z (2022) Antimicrobial peptides (AMPs): a promising class of antimicrobial compounds. J Appl Microbiol 132(3):1573–1596. https://doi.org/10.1111/jam.15314

Article  CAS  Google Scholar 

Wnorowska U, Fiedoruk K, Piktel E, Prasad SV, Sulik M, Janion M, Daniluk T, Savage PB, Bucki R (2020) Nanoantibiotics containing membrane-active human cathelicidin LL-37 or synthetic ceragenins attached to the surface of magnetic nanoparticles as novel and innovative therapeutic tools: current status and potential future applications. J Nanobiotechnol 18:3. https://doi.org/10.1186/s12951-019-0566-z

Article  Google Scholar 

Kuroda K, Okumura K, Isogai H, Isogai E (2015) The human cathelicidin antimicrobial peptide LL-37 and mimics are potential anticancer drugs. Front Oncol 5:144. https://doi.org/10.3389/fonc.2015.00144

Article  PubMed  PubMed Central  Google Scholar 

Chernov AN, Tsapieva AN, Alaverdian DA, Filatenkova TA, Galimova ES, Suvorova M, Shamova OV, Suvorov AN (2022) In vitro evaluation of cytotoxic effect of Streptococcus pyogenes strains, Protegrin PG-1, Cathelicidin LL-37, Nerve Growth Fac-tor and chemotherapy on C6 glioma cell line. Molecules 27(2):569. https://doi.org/10.3390/molecules27020569

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chernov A, Filatenkova T, Glushakov RI, Buntovskaya AS, Alaverdian DA, Tsapieva AN, Kim AV, Fedorov EV, Skliar SS, Matsko MV, Galimova ES, Shamova OV (2022) Anticancer effect of cathelicidin LL-37, protegrin PG-1, nerve growth factor NGF, and temozolomide: impact on the mitochondrial metabolism, clonogenic potential, and migration of human U251 glioma cells. Molecules 27:4988. https://doi.org/10.3390/molecules27154988

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chen X, Zou X, Qi G, Tang Y, Guo Y, Si J, Liang L (2018) Roles and mechanisms of human cathelicidin LL-37 in cancer. Cell Physiol Biochem 47(3):1060–1073. https://doi.org/10.1159/000490183

Article  PubMed  CAS  Google Scholar 

Tzitzilis A, Boura-Theodorou A, Michail V, Papadopoulos S, Krikorian D, Lekka ME, Koukkou AI, Sakarellos-Daitsiotis M, Panou-Pomonis E (2020) Cationic amphipathic peptide analogs of cathelicidin LL-37 as a probe in the development of antimicrobial/anticancer agents. J Pept Sci 26(7):e3254. https://doi.org/10.1002/psc.3254

Article  PubMed  CAS  Google Scholar 

Rothan HA, Mohamed Z, Sasikumar PG, Reddy KA, Rahman NA, Yusof R (2014) In vitro characterization of novel protegrin-1 analogues against neoplastic cells. Intern J Peptide Res Ther 20(3):259–267. https://doi.org/10.1007/s10989-013-9388-2

Article  CAS  Google Scholar 

Zharkova MS, Artamonov AYu, Grinchuk TM et al (2016) Peptides of the innate immune system modulate the cytotoxic effect of antitumor antibiotics. Ross Immunolog J 10(2):548–550

Google Scholar 

Soundrarajan N, Park S, Le Van Q, Chanh C-S, Raghunathan G, Ahn B, Song H, Kim J-H, Park C (2019) Protegrin-1 cytotoxicity towards mammalian cells positively correlates with the magnitude of conformational changes of the unfolded form upon cell interaction. Sci Rep 9:11569. https://doi.org/10.1038/s41598-019-47955-2

Article  PubMed  PubMed Central  CAS  Google Scholar 

Shamova OV, Orlov DS, Pazina TY et al (2012) Study of the molecular and cellular bases of the cytotoxic effect of antimicrobial peptides on tumor cells. Fundamental Res 5:207–212

Google Scholar 

Lei J, Sun L, Huang S, Zhu C, Li P, He J, Mackey V, Coy DH, He Q (2019) The antimicrobial peptides and their potential clinical applications. Am J Transl Res 11(7):3919–3931

PubMed  PubMed Central  CAS  Google Scholar 

Cheng F, Wan X, Wang B, Li Y, Peng P, Xu S, Han C, Mao F, Guo D (2022) Establishment and characteristics of GWH04, a new primary human glioblastoma cell line. Int J Oncol 61(5):139. https://doi.org/10.3892/ijo.2022.5429

Article  PubMed  PubMed Central  CAS  Google Scholar 

Amini S, White MK (2013) Neuronal cell culture. methods and protocols. Humana, Totowa

Book  Google Scholar 

Brem H, Golinko MS, Stojadinovic O, Kodra A, Diegelmann RF, Vukelic S, Entero H, Coppock DL, Tomic-Canic M (2008) Primary cultured fibroblasts derived from patients with chronic wounds: a methodology to produce human cell lines and test putative growth factor therapy such as GMCSF. J Transl Med 6:75. https://doi.org/10.1186/1479-5876-6-75

Article  PubMed  PubMed Central  CAS  Google Scholar 

Riss TL, Moravec RA, Niles AL et al (2013) Assay Guidance Manual Cell Viability Assays. Eli Lilly & Company and the National Center for Advancing Translational Sciences, Bethesda

Google Scholar 

Junka AF, Janczura A, Smutnicka D, Mączyńska B, Anna S, Nowicka J, Bartoszewicz M, Gościniak G (2012) Use of the real time xCELLigence system for purposes of medical microbiology. Pol J Microbiol 61:191–197

Article  PubMed  Google Scholar 

Chou T-C (2006) Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 58:621–681. https://doi.org/10.1124/pr.58.3.10

Article  PubMed  CAS  Google Scholar 

Takano S, Kato Y, Yamamoto T, Kaneko MK, Ishikawa E, Tsujimoto Y, Matsuda M, Nakai K, Yanagiya R, Morita S, Tsuboi K, Matsumura A (2012) Immunohistochemical detection of IDH1 mutation, p53, and internexin as prognostic factors of glial tumors. J Neurooncol 108:361–373. https://doi.org/10.1007/s11060-012-0837-0

Article  PubMed  CAS  Google Scholar 

Abdulghani MM, Abbas MN, Mohammed WR (2019) Immunohistochemical expression of epidermal growth factor receptor in astrocytic tumors in Iraqi patients. Open Access Maced J Med Sci 7(21):3514–3520. https://doi.org/10.3889/oamjms.2019.751

Article  PubMed  PubMed Central  Google Scholar 

Takano S, Ishikawa E, Sakamoto N, Matsuda M, Akutsu H, Noguchi M, Kato Y, Yamamoto T, Matsumura A (2016) Immunohistochemistry on IDH 1/2, ATRX, p53 and Ki-67 substitute molecular genetic testing and predict patient prognosis in grade III adult diffuse gliomas. Brain Tumor Pathol 33(2):107–116. https://doi.org/10.1007/s10014-016-0260-x

Article  PubMed  CAS  Google Scholar 

Brehar FM, Arsene D, Gorgan BLA, MR. (2015) Immunohistochemical analysis of GFAP-δ and nestin in cerebral astrocytomas. Brain Tumor Pathol 32(2):90–98. https://doi.org/10.1007/s10014-014-0199-8

Article  PubMed  CAS  Google Scholar 

Seol HJ, Chang JH, Yamamoto J, Romagnuolo R, Suh Y, Weeks A, Agnihotri S, Smith CA, Rutka JT (2012) Overexpression of CD99 increases the migration and invasiveness of human malignant glioma cells. Genes Cancer 3(9–10):535–549. https://doi.org/10.1177/1947601912473603

Article  PubMed  PubMed Central  CAS 

留言 (0)

沒有登入
gif