Modeling the deformation of the semiconductor quantum dot with a multilayer shell in a living cell

A.S. Kashani, M. Packirisamy, Cancer cells optimize elasticity for efficient migration, R. Soc. Open Sci. 7, 200747 (2020); http://dx.doi.org/10.1098/rsos.200747.

M. Plodinec, M. Loparic, C. A Monnier et al., The nanomechanical signature of breast cancer, Nat Nanotechnol 7 (11), 757 (2012); https://doi.org/10.1038/nnano.2012.167.

E.A. Corbin, F. Kong, C.T. Lim, W.P. King, R. Bashir, Biophysical properties of human breast cancer cells measured using silicon MEMS resonators and atomic force microscopy, Lab. Chip 15 (3), 839 (2015); https://doi.org/10.1039/C4LC01179A.

R. Omidvar, M. Tafazzoli-Shadpour, M.A. Shokrgozar, M. Rostami, Atomic force microscope-based single cell force spectroscopy of breast cancer cell lines: An approach for evaluating cellular invasion, J. Biomech. 47 (13), 3373 (2014); https://doi.org/10.1016/j.jbiomech.2014.08.002.

M. Prabhune, G. Belge, A. Dotzauer, J. Bullerdiek, M. Radmacher, Comparison of mechanical properties of normal and malignant thyroid cells, Micron 43 (12), 1267 (2012); https://doi.org/10.1016/j.micron.2012.03.023.

V. Palmieri, D. Lucchetti, A. Maiorana, M. Papi, G. Maulucci, G. Ciasca, M. Svelto, M. De Spirito, A. Sgambato, Biomechanical investigation of colorectal cancer cells, Appl. Phys. Lett. 105, 123701 (2014); https://doi.org/10.1063/1.4896161.

L. Bastatas, D. Martinez-Marin, J. Matthews, J. Hashem, Y.J. Lee, S. Sennoune, S. Filleur, R. Martinez-Zaguilan, S. Park, AFM nano-mechanics and calcium dynamics of prostate cancer cells with distinct metastatic potential, Biochim. Biophys. Acta Gen. Subj. 1820 (7), 1111 (2012); https://doi.org/10.1016/j.bbagen.2012.02.006.

G.Weder, M.C. Hendriks-Balk, R. Smajda, D. Rimoldi et al. Increased plasticity of the stiffness of melanoma cells correlates with their acquisition of metastatic properties, Nanomed. Nanotechnol. Biol. Med. 10 (1), 141 (2014), https://doi.org/10.1016/j.nano.2013.07.007.

M. Pachenari, S.M. Seyedpour, M. Janmaleki, S.B. Shayan, S. Taranejoo, H. Hosseinkhani, Mechanical properties of cancer cytoskeleton depend on actin filaments to microtubules content: Investigating different grades of colon cancer cell lines, J. Biomech. 47 (2), 373 (2014); https://doi.org/10.1016/j.jbiomech.2013.11.020.

S. Kwon, W. Yang, D. Moon, K.S. Kim, Comparison of Cancer Cell Elasticity by Cell Type, Journal of Cancer 11 (18), 5403–5412 (2020); https://doi.org/10.7150/jca.45897;

F. Pérez-Cota, R. Fuentes-Domínguez, S. La Cavera et al., Picosecond ultrasonics for elasticity-based imaging and characterization of biological cells, Journal of Applied Physics 128, 160902: 1 (2020); https://doi.org/10.1063/5.0023744.

G.S. Selopal, H. Zhao, Zh.M. Wang, Core/Shell Quantum Dots Solar Cells, Advanced Funct. Mater. 13, 1908762 (2020); https://doi.org/10.1002/adfm.201908762.

S. Chinnathambi, N. Abu, N. Hanagata, Biocompatible CdSe/ZnS quantum dot micelles for long-term cell imaging without alteration to the native structure of the blood plasma protein human serum albumin, RSC Adv 7, 2392 (2017); https://doi.org/10.1039/C6RA26592H.

I. Du Fossé, S. Lal, A.N. Hossaini, I. Infante, A.J. Houtepen, Effect of Ligands and Solvents on the Stability of Electron Charged CdSe Colloidal Quantum Dots, J. Phys. Chem. C 125, 23968 (2021); https://doi.org/10.1021/acs.jpcc.1c07464.

R. Wojnarowska-Nowak, J. Polit, A. Zięba, I.D. Stolyarchuk, S. Nowak, M. Romerowicz-Misielak, E.M. Sheregii, Effect of Ligands and Solvents on the Stability of Electron Charged CdSe Colloidal Quantum Dots, Opto-Electronics Review 25, 137 (2017); https://doi.org/10.1016/j.opelre.2017.04.004.

R. Wojnarowska-Nowak, J. Polit, A. Zięba, I.D. Stolyarchuk, S. Nowak, M. Romerowicz-Misielak, E.M. Sheregii, Synthesis and characterisation of human serum albumin passivated CdTe nanocrystallites as fluorescent probe, Micro and Nano Letters 13, 326 (2018); http://dx.doi.org/10.1049/mnl.2017.0054.

Q. Xiao, Sh. Huang, W. Sua, P. Li, J. Ma, F. Luo, J. Chen, Y. Liu, Systematically investigations of conformation and thermodynamics of HSA adsorbed to different sizes of CdTe quantum dots, Colloids and Surfaces B: Biointerfaces 102, 76 (2013); https://doi.org/10.1016/j.colsurfb.2012.08.028.

O. Kuzyk, O. Dan’kiv, R. Peleshchak, I. Stolyarchuk, The deformation of spherical CdSe quantum dot with a multilayer shell, Rom. J. Phys. 67, 607 (2022); https://rjp.nipne.ro/2022_67_5-6/RomJPhys.67.607.pdf.

R.M. Peleshchak, O.V. Kuzyk, O.O. Dan’kiv, The influence of acoustic deformation on the recombination radiation in InAs/GaAs heterostructure with InAs quantum dots, Physica E: Low-dimensional Systems and Nanostructures 119, 113988 (2020); https://doi.org/10.1016/j.physe.2020.113988.

D. Vollath, F.D. Fischer, D. Holec, Surface energy of nanoparticles – influence of particle size and structure, Beilstein J. Nanotechnol. 9, 2265 (2018); https://doi.org/10.3762/bjnano.9.211.

F.A. La Porta, J. Andrés, M.S. Li, J.R. Sambrano, J.A. Varela, E. Longo, Zinc blende versus wurtzite ZnS nanoparticles: control of the phase and optical properties by tetrabutylammonium hydroxide, Phys. Chem. Chem. Phys. 16 (37), 20127 (2014); https://doi.org/10.1039/C4CP02611J.

O.V. Kuzyk, І.D. Stolyarchuk, O.O. Dan’kiv, R.M. Peleshchak, Baric properties of quantum dots of the type of core (CdSe)-multilayer shell (ZnS/CdS/ZnS) for biomedical applications, Appl. Nanosci. 13, 4727 (2023); https://doi.org/10.1007/s13204-022-02604-5.

留言 (0)

沒有登入
gif