Uffelmann E, Huang QQ, Munung NS, de Vries J, Okada Y, Martin AR, et al. Genome-wide association studies. Nat Rev Methods Prim. 2021;1:59 https://doi.org/10.1038/s43586-021-00056-9.
Sherry ST. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001;29:308–11. https://doi.org/10.1093/nar/29.1.308.
Article PubMed PubMed Central CAS Google Scholar
Schaid DJ, Chen W, Larson NB. From genome-wide associations to candidate causal variants by statistical fine-mapping. Nat Rev Genet. 2018;19:491–504. https://doi.org/10.1038/s41576-018-0016-z.
Article PubMed PubMed Central CAS Google Scholar
Wang QS, Huang H. Methods for statistical fine-mapping and their applications to auto-immune diseases. Semin Immunopathol. 2022;44:101–13. https://doi.org/10.1007/s00281-021-00902-8.
Article PubMed PubMed Central CAS Google Scholar
Das S, Abecasis GR, Browning BL. Genotype imputation from large reference panels. Annu Rev Genom Hum Genet. 2018;19:73–96. https://doi.org/10.1146/annurev-genom-083117-021602.
Naj AC. Genotype imputation in genome-wide association studies. Curr Protoc Hum Genet. 2019;102:1–15. https://doi.org/10.1002/cphg.84.
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–44. https://doi.org/10.1038/nature14539.
Article PubMed CAS Google Scholar
Rubinacci S, Delaneau O, Marchini J. Genotype imputation using the Positional Burrows Wheeler Transform. PLOS Genet. 2020;16:e1009049 https://doi.org/10.1371/journal.pgen.1009049.
Article PubMed PubMed Central CAS Google Scholar
Das S, Forer L, Schönherr S, Sidore C, Locke AE, Kwong A, et al. Next-generation genotype imputation service and methods. Nat Genet. 2016;48:1284–7. https://doi.org/10.1038/ng.3656.
Article PubMed PubMed Central CAS Google Scholar
Browning BL, Zhou Y, Browning SR. A one-penny imputed genome from next-generation reference panels. Am J Hum Genet. 2018;103:338–48. https://doi.org/10.1016/j.ajhg.2018.07.015.
Article PubMed PubMed Central CAS Google Scholar
Li N, Stephens M. Modeling linkage disequilibrium and identifying recombination hotspots using single-nucleotide polymorphism data. Genetics. 2003;165:2213–33.
De Marino A, Mahmoud AA, Bose M, Bircan KO, Terpolovsky A, Bamunusinghe V, et al. A comparative analysis of current phasing and imputation software. PLoS One. 2022;17:1–22. https://doi.org/10.1371/journal.pone.0260177.
Consortium IH 3. Integrating common and rare genetic variation in diverse human populations. Nature. 2010;467:52–58. https://doi.org/10.1038/nature09298.
Genomes Project C, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, et al. A global reference for human genetic variation. Nature. 2015;526:68–74. https://doi.org/10.1038/nature15393.
A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet. 2016;48:1279-83. https://doi.org/10.1038/ng.3643.
Durbin R. Efficient haplotype matching and storage using the positional Burrows–Wheeler transform (PBWT). Bioinformatics. 2014;30:1266–72. https://doi.org/10.1093/bioinformatics/btu014.
Article PubMed PubMed Central CAS Google Scholar
Chen J, Shi X. Sparse convolutional denoising autoencoders for genotype imputation. Genes. 2019;10:1–16. https://doi.org/10.3390/genes10090652.
Song M, Greenbaum J, Luttrell J, Zhou W, Wu C, Luo Z, et al. An autoencoder-based deep learning method for genotype imputation. Front Artif Intell. 2022;5, https://doi.org/10.3389/frai.2022.1028978
Dias R, Evans D, Chen SF, Chen KY, Loguercio S, Chan L, et al. Rapid, Reference-Free human genotype imputation with denoising autoencoders. Elife. 2022;11:1–20. https://doi.org/10.7554/elife.75600.
Kojima K, Tadaka S, Katsuoka F, Tamiya G, Yamamoto M, Kinoshita K. A genotype imputation method for de-identified haplotype reference information by using recurrent neural network. PLOS Comput Biol. 2020;16:e1008207 https://doi.org/10.1371/journal.pcbi.1008207.
Article PubMed PubMed Central CAS Google Scholar
Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997;9:1735–80. https://doi.org/10.1162/neco.1997.9.8.1735.
Article PubMed CAS Google Scholar
Cho K, van Merrienboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, et al. Learning phrase representations using RNN encoder–decoder for statistical machine translation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Stroudsburg, PA, USA: Association for Computational Linguistics; 2014, pp 1724–34.
Guo M-H, Xu T-X, Liu J-J, Liu Z-N, Jiang P-T, Mu T-J, et al. Attention mechanisms in computer vision: a survey. Comput Vis Media. 2022;8:331–68. https://doi.org/10.1007/s41095-022-0271-y.
Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention is all you need. IEEE Ind Appl Mag. 2017;8:8–15. https://doi.org/10.1109/2943.974352.
Mowlaei ME, Li C, Chen J, Jamialahmadi B, Kumar S, Rebbeck TR, et al. Split-transformer impute (STI): genotype imputation using a transformer-based model. bioRxiv. 2023, https://www.biorxiv.org/content/10.1101/2023.03.05.531190v1.
Horton R, Wilming L, Rand V, Lovering RC, Bruford EA, Khodiyar VK, et al. Gene map of the extended human MHC. Nat Rev Genet. 2004;5:889–99.
Shiina T, Hosomichi K, Inoko H, Kulski JK. The HLA genomic loci map: expression, interaction, diversity and disease. J Hum Genet. 2009;54:15–39. https://doi.org/10.1038/jhg.2008.5.
MacArthur J, Bowler E, Cerezo M, Gil L, Hall P, Hastings E, et al. The new NHGRI- EBI catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res. 2017;45:D896–D901.
Article PubMed CAS Google Scholar
Débora YCB, Vitor RCA, Bitarello BD, Kelly N, Jérôme G, Diogo M. Mapping bias overestimates reference allele frequencies at the HLA genes in the 1000 Genomes Project Phase I Data. G3 Genes|Genomes|Genetics. 2015;5:931–41.
Dilthey AT, Moutsianas L, Leslie S, McVean G. HLA*IMP-an integrated framework for imputing classical HLA alleles from SNP genotypes. Bioinformatics. 2011;27:968–72. https://doi.org/10.1093/bioinformatics/btr061.
Article PubMed PubMed Central CAS Google Scholar
Jia X, Han B, Onengut-Gumuscu S, Chen WM, Concannon PJ, Rich SS, et al. Imputing amino acid polymorphisms in human leukocyte antigens. PLoS One. 2013;8:e64683 https://doi.org/10.1371/journal.pone.0064683.
Article PubMed PubMed Central CAS Google Scholar
Naito T, Okada Y. HLA imputation and its application to genetic and molecular fine-mapping of the MHC region in autoimmune diseases. Semin Immunopathol. 2022;44:15–28. https://doi.org/10.1007/s00281-021-00901-9.
Article PubMed CAS Google Scholar
Karnes JH, Shaffer CM, Bastarache L, Gaudieri S, Glazer AM, Steiner HE, et al. Comparison of HLA allelic imputation programs. PLoS One. 2017;12:1–12. https://doi.org/10.1371/journal.pone.0172444.
Naito T, Suzuki K, Hirata J, Kamatani Y, Matsuda K, Toda T, et al. A deep learning method for HLA imputation and trans-ethnic MHC fine-mapping of type 1 diabetes. Nat Commun. 2021;12:1639 https://doi.org/10.1038/s41467-021-21975-x.
Article PubMed PubMed Central CAS Google Scholar
Gu J, Wang Z, Kuen J, Ma L, Shahroudy A, Shuai B, et al. Recent advances in convolutional neural networks. Pattern Recognit. 2018;77:354–77. https://doi.org/10.1016/j.patcog.2017.10.013.
Naito T, Satake W, Ogawa K, Suzuki K, Hirata J, Foo JN, et al. Trans‐ethnic fine‐mapping of the major histocompatibility complex region linked to Parkinson’s disease. Mov Disord. 2021;36:1805–14. https://doi.org/10.1002/mds.28583.
Article PubMed PubMed Central CAS Google Scholar
Akiyama Y, Sonehara K, Maeda D, Katoh H, Naito T, Yamamoto K, et al. Genome-wide association study identifies risk loci within the major histocompatibility complex region for Hunner-type interstitial cystitis. Cell Rep Med. 2023;4:101114 https://doi.org/10.1016/j.xcrm.2023.101114.
Article PubMed PubMed Central CAS Google Scholar
Tanaka K, Kato K, Nonaka N, Seita J. Efficient HLA imputation from sequential SNPs data by Transformer. arXiv. 2022. https://doi.org/10.48550/arXiv.2211.06430.
Zhou J, Theesfeld CL, Yao K, Chen KM, Wong AK, Troyanskaya OG. Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk. Nat Genet. 2018;50:1171–9. https://doi.org/10.1038/s41588-018-0160-6.
Article PubMed PubMed Central CAS Google Scholar
Avsec Ž, Agarwal V, Visentin D, Ledsam JR, Grabska-Barwinska A, Taylor KR, et al. Effective gene expression prediction from sequence by integrating long-range interactions. Nat Methods. 2021;18:1196–203. https://doi.org/10.1038/s41592-021-01252-x.
Comments (0)