Marsden JF. Cerebellar ataxia. In: Day BL, Lord SR, editors. Handb Clin Neurol. Oxford, United Kingdom: Elsevier; 2018. p. 159. https://doi.org/10.1016/B978-0-444-63916-5.00017-3.
Teive HAG, Ashizawa T. Primary and secondary ataxias. Curr Opin Neurol. 2015;28:413–22. https://doi.org/10.1097/WCO.0000000000000227.
Klockgether T, Mariotti C, Paulson HL. Spinocerebellar ataxias. Nat Rev Dis Primers. 2019;5:24. https://doi.org/10.1038/s41572-019-0074-3.
Kuo SH, Ataxia. Continuum (Minneap Minn). 2019;25:1036–54. https://doi.org/10.1212/CON.0000000000000753.
Manto M, Gandini J, Feil K, Strupp M. Cerebellar ataxias: an update. Curr Opin Neurol. 2020;33:150–60. https://doi.org/10.1097/WCO.0000000000000774.
Albin RL. Dominant ataxias and Friedreich ataxia: an update. Curr Opin Neurol. 2003;16:507–14. https://doi.org/10.1097/01.wco.0000084230.82329.d5.
Soong BW, Morrison PJ. Spinocerebellar ataxias. In: Manto M, Huisman TAGM, editors. Handb Clin Neurol. Oxford, United Kingdom: Elsevier; 2018. p. 155.
Moro A, Moscovich M, Farah M. Nonmotor symptoms in spinocerebellar ataxias (SCAs). Cerebellum Ataxias. 2019;6:1–8. https://doi.org/10.1186/s40673-019-0106-5.
Liang L, Chen T, Wu Y. The electrophysiology of spinocerebellar ataxias. Neurophysiol Clin. 2016;46:27–34. https://doi.org/10.1016/j.neucli.2015.12.006.
Ilg W, Branscheidt M, Butala A, Celnik P, de Paola L, Horak FB, et al. Consensus paper: neurophysiological assessments of ataxias in daily practice. Cerebellum. 2018;17:628–53. https://doi.org/10.1007/s12311-018-0937-2.
Article CAS PubMed Google Scholar
Ring MJ, Davalos L. Peripheral neuropathy. Prim Care. 2024;51(2):327–44. https://doi.org/10.1016/j.pop.2023.12.002.
Gwathmey K G, Pearson K T. Diagnosis and management of sensory polyneuropathy. BMJ. 2019;365(l1108). https://doi.org/10.1136/bmj.l1108.
Page MJ, McKenzie JE, Bossuyt PM, et al. Prisma [2020 statement]: an updated Guideline for reporting systematic reviews. BMJ. 2021;372. https://doi.org/10.1136/BMJ.N71.
Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan-a web and mobile app for systematic reviews. Syst Rev. 2016;5:210. https://doi.org/10.1186/s13643-016-0384-4.
Article PubMed PubMed Central Google Scholar
Shea BJ, Reeves BC, Wells G, Thuku M, Hamel C, Moran J, et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ. 2017;358:j4008. https://doi.org/10.1136/bmj.j4008.
Article PubMed PubMed Central Google Scholar
Wells G, Shea B, O’Connell D, Peterson J, Welch V, Losos M et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality if nonrandomized studies in meta-analyses. 2012. https://doi.org/10.2307/632432
Soong BW, Lin KP. Correlation of peripheral nerve fiber loss and trinucleotide repeats in Machado-Joseph disease. Can J Neurol Sci. 1998;25:59–63. https://doi.org/10.1017/S0317167100033503.
Article CAS PubMed Google Scholar
Klockgether T, Schöls L, Abele M, et al. Age related axonal neuropathy in spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD). J Neurol Neurosurg Psychiatry. 1999;66(2):222–4. https://doi.org/10.1136/jnnp.66.2.222.
Article CAS PubMed PubMed Central Google Scholar
Van de Warrenburg BPC, Notermans NC, Schelhaas HJ, van Alfen N, Sinke RJ, Knoers NVAM, et al. Peripheral nerve involvement in spinocerebellar ataxias. Arch Neurol. 2004;61:257–61. https://doi.org/10.1001/archneur.61.2.257.
Sakakibara R, Uchiyama T, Arai K, Yamanishi T, Hattori T. Lower urinary tract dysfunction in Machado-Joseph disease: a study of 11 clinical-urodynamic observations. J Neurol Sci. 2004;218:67–72. https://doi.org/10.1016/j.jns.2003.11.002.
Crum BA, Josephs KA. Varied electrophysiologic patterns in spinocerebellar ataxia type 2. Eur J Neurol. 2006;13:194–7. https://doi.org/10.1111/j.1468-1331.2006.01166.x.
Article CAS PubMed Google Scholar
Velázquez Pérez L, Sánchez Cruz G, Canales Ochoa N, et al. Electrophysiological features in patients and presymptomatic relatives with spinocerebellar ataxia type 2. J Neurol Sci. 2007;263(1–2):158–64. https://doi.org/10.1016/j.jns.2007.07.013.
França MC Jr., D’Abreu A, Nucci A, Lopes-Cendes I. Muscle excitability abnormalities in Machado-Joseph disease. Arch Neurol. 2008;65:525–9. https://doi.org/10.1001/archneur.65.4.525.
França MC Jr, D’abreu A, Nucci A, Cendes F, Lopes-Cendes I. Prospective study of peripheral neuropathy in Machado-Joseph disease. Muscle Nerve. 2009;40:1012–8. https://doi.org/10.1002/mus.21396.
Velázquez-Perez L, Rodríguez-Labrada R, Canales-Ochoa N, et al. Progression markers of spinocerebellar ataxia 2. A twenty years neurophysiological follow up study. J Neurol Sci. 2010;290(1–2):22–6. https://doi.org/10.1016/j.jns.2009.12.013.
Article CAS PubMed Google Scholar
Álvarez-Paradelo S, García A, Infante J, Berciano J. Multimodal neurophysiological study of SCA2 and SCA3 autosomal dominant hereditary spinocerebellar ataxias. Neurologia. 2011;26:157–65. https://doi.org/10.1016/j.nrl.2010.09.012.
Pedroso JL, Bezerra MLE, Braga-Neto P, Pinheiro DS, Minett T, do Prado GF, et al. Is neuropathy involved with restless legs syndrome in Machado-Joseph disease? Eur Neurol. 2011;66:200–3. https://doi.org/10.1159/000331008.
Yadav R, Pal PK, Krishna N, et al. Electrophysiological evaluation of spinocerebellar ataxias 1, 2 and 3. J Neurol Sci. 2012;312(1–2):142–5. https://doi.org/10.1016/j.jns.2011.07.051.
Degardin A, Dobbelaere D, Vuillaume I, Defoort-Dhellemmes S, Hurtevent JF, Sablonnière B, et al. Spinocerebellar ataxia: a rational approach to aetiological diagnosis. Cerebellum. 2012;11:289–99. https://doi.org/10.1007/s12311-011-0310-1.
Escórcio Bezerra ML, Pedroso JL, Pinheiro DS, Braga-Neto P, Povoas Barsottini OG, Braga NIO, et al. Pattern of peripheral nerve involvement in Machado-Joseph disease: neuronopathy or distal axonopathy? A clinical and neurophysiological evaluation. Eur Neurol. 2013;69:129–33. https://doi.org/10.1159/000345274.
Article CAS PubMed Google Scholar
Velázquez-Pérez L, Rodríguez-Labrada R, Canales-Ochoa N, et al. Progression of early features of spinocerebellar ataxia type 2 in individuals at risk: a longitudinal study. Lancet Neurol. 2014;13(5):482–9. https://doi.org/10.1016/S1474-4422(14)70027-4.
Article CAS PubMed Google Scholar
Bezerra MLE, Pedroso JL, Braga-Neto P, Abrahao A, de Albuquerque MVC, Borges FRP, et al. Pattern of peripheral nerve involvement in spinocerebellar ataxia type 2: a neurophysiological assessment. Cerebellum. 2016;15:767–73. https://doi.org/10.1007/s12311-015-0753-x.
Article CAS PubMed Google Scholar
Pulido-Valdeolivas I, Gómez-Andrés D, Sanz-Gallego I, Rausell E, Arpa J. Patterns of motor signs in spinocerebellar ataxia type 3 at the start of follow-up in a reference unit. Cerebellum Ataxias. 2016;3:4. https://doi.org/10.1186/s40673-016-0042-6.
Article PubMed PubMed Central Google Scholar
Myftiu B, Baslo MB, Kocasoy Orhan E. Electrophysiological study of patients with spinocerebellar and Friedreich’s ataxia. Neurol Sci Neurophysiol. 2018;35:138–44. https://doi.org/10.5152/NSN.2018.11239.
Pelosi L, Iodice R, Antenora A, et al. Spinocerebellar ataxia type 2-neuronopathy or neuropathy? Muscle Nerve. 2019;60(3):271–8. https://doi.org/10.1002/mus.26613.
Chakravorty S, Logan R, Elson MJ, Luke RR, Verma S. Expanding the genotype-phenotype correlation of childhood sensory polyneuropathy of genetic origin. Sci Rep. 2020;10:16184. https://doi.org/10.1038/s41598-020-73219-5.
Comments (0)