Reversed-phase thin-layer chromatographic and computational evaluation of lipophilicity parameters of α,β-unsaturated acids

Arnott JA, Planey SL (2012) The influence of lipophilicity in drug discovery and design. Expert Opin Drug Discov 7(10):863–875. https://doi.org/10.1517/17460441.2012.714363

Article  CAS  PubMed  Google Scholar 

Bayliss MK, Butler J, Feldman PL, Green DV, Leeson PD, Palovich MR, Taylor AJ (2016) Quality guidelines for oral drug candidates: dose, solubility and lipophilicity. Drug Disc Today 21(10):1719–1727. https://doi.org/10.1016/j.drudis.2016.07.007

Article  CAS  Google Scholar 

Arnott JA, Kumar R, Planey SL (2013) Lipophilicity indices for drug development. J Appl Biopharm Pharmacokinet 1(1):31–36. https://doi.org/10.14205/2309-4435.2013.01.01.6

Article  CAS  Google Scholar 

Kempińska D, Chmiel T, Kot-Wasik A, Mroz A, Mazerska Z, Namieśnik J (2019) State of the art and prospects of methods for determination of lipophilicity of chemical compounds. TrAC Trends Anal Chem 113:54–73. https://doi.org/10.1016/j.trac.2019.01.011

Article  CAS  Google Scholar 

Morak-Młodawska E, Nowak M, Pluta K (2007) Determination of the lipophilicity parameters RM0 and LogP of new azaphenothiazines by reversed-phase thin-layer chromatography. J Liq Chromatogr Relat Technol 30:1845–1854. https://doi.org/10.1080/10826070701360749

Article  CAS  Google Scholar 

Csermely T, Kalász H, Deák K, Mohammed Y, Hasan MY, Darvas F, Petroianu G (2008) Lipophilicity determination of some ACE inhibitors by TLC. J Liq Chromatogr Relat Technol 31:2019–2034. https://doi.org/10.1080/10826070802198410

Article  CAS  Google Scholar 

Odović J, Karljiković-Rajić K, Trbojević-Stanković J, Stojimirović B, Vladimirov S (2012) Lipophilicity examination of some ACE inhibitors and hydrochlorothiazide on cellulose in RP thin-layer chromatography. Iran J Pharm Res 11:763–770. https://doi.org/10.22037/ijpr.2012.1117

Article  PubMed  PubMed Central  Google Scholar 

Dobričić V, Turković N, Ivković B, Csuvik O, Vujić Z (2020) Evaluation of the lipophilicity of chalcones by RP-TLC and computational methods. JPC–J Planar Chromat 33:245–253. https://doi.org/10.1007/s00764-020-00029-w

Article  CAS  Google Scholar 

Starek M, Komsta Ł, Krzek J (2013) Reversed-phase thin-layer chromatography technique for the comparison of the lipophilicity of selected non-steroidal anti-inflammatory drugs. J Pharm Biomed Anal 85:132–137. https://doi.org/10.1016/j.jpba.2013.07.017

Article  CAS  PubMed  Google Scholar 

Dabrowska M, Starek M, Skucinski J (2011) Lipophilicity study of some non-steroidal anti-inflammatory agents and cephalosporin antibiotics: a review. Talanta 86:35–51. https://doi.org/10.1016/j.talanta.2011.09.017

Article  CAS  PubMed  Google Scholar 

Silhavy TJ, Kahne D, Walker S (2010) The bacterial cell envelope. Cold Spring Harb Perspect Biol 2(5):a000414. https://doi.org/10.1101/cshperspect.a000414

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baker RE, Mahmud AS, Miller IF, Rajeev et al (2022) Infectious disease in an era of global change. Nat Rev Microbiol 20(4):193–205. https://doi.org/10.1038/s41579-021-00639-z

Article  CAS  PubMed  Google Scholar 

Vitnik VV, Milenković MT, Dilber SP, Vitnik ŽJ, Juranić IO (2012) Improved synthesis and in vitro study of antimicrobial activity of α, β-unsaturated and α-bromo carboxylic acids. J Chem Serb Soc 77(6):741–750. https://doi.org/10.2298/JSC111104016V

Article  CAS  Google Scholar 

Vitnik VV, Ivanović MD, Vitnik ŽJ, Đorđević JB, Žižak JS, Juranić ZD, Juranić IO (2009) One-step conversion of ketones to conjugated acids using bromoform. Syth Comm 39:1457–1471. https://doi.org/10.1080/00397910802531955

Article  CAS  Google Scholar 

Soczewinski E, Wachmeister CA (1962) The relation between the composition of certain ternary two-phase solvent systems and RM values. J Chromatogr A 7:311–320. https://doi.org/10.1016/S0021-9673(01)86422-0

Article  CAS  Google Scholar 

CambridgeSoft Corporation. 2005. ChemDraw ultra version 8.0.3. Cambridge, MA.

Ghose AK, Crippen GM (1987) Atomic physicochemical parameters for three-dimensional-structure-directed quantitative structure-activity relationships. 2. Modeling dispersive and hydrophobic interactions. J Chem Inf Comput Sci 27:21–35. https://doi.org/10.1021/ci00053a005

Article  CAS  PubMed  Google Scholar 

Viswanadhan VN, Ghose AK, Revankar GR, Robins RK (1989) Atomic physicochemical parameters for three dimensional structure directed quantitative structure-activity relationships. 4. Additional parameters for hydrophobic and dispersive interactions and their application for an automated superposition of certain naturally occurring nucleoside antibiotics. J Chem Inf Comput Sci 29:163–172. https://doi.org/10.1021/ci00063a006

Article  CAS  Google Scholar 

Broto P, Moreau G, Vandycke C (1984) Molecular structures: perception, autocorrelation descriptor and SAR studies. System of atomic contributions for the calculation of n-octane/water partition coefficients. Eur J Med Chem Chim Theor 19:71–78. https://doi.org/10.1021/ci00063a006

Article  CAS  Google Scholar 

MarvinSketch 15.1.26 (2015). ChemAxon, Budapest. http://www.chemaxon.com

https://admetmesh.scbdd.com

http://www.swissadme.ch

https://biosig.lab.uq.edu.au

https://www.ufz.de

Chirita RI, West C, Zubrzycki S, Finaru AL, Elfakir C (2011) Investigations on the chromatographic behaviour of zwitterionic stationary phases used in hydrophilic interaction chromatography. J Chromatogr A 1218:5939–5963. https://doi.org/10.1016/j.chroma.2011.04.002

Article  CAS  PubMed  Google Scholar 

Schuster G, Lindner W (2013) Comparative characterization of hydrophilic interaction liquid chromatography columns by linear solvation energy relationships. J Chromatogr A 1273:73–94. https://doi.org/10.1016/j.chroma.2012.11.075

Article  CAS  PubMed  Google Scholar 

Moriwaki H, Tian YS, Kawashita N, Takagi T (2018) Mordred: a molecular descriptor calculator. J Cheminform 10:1–14. https://doi.org/10.1186/s13321-018-0258-y

Article  CAS  Google Scholar 

Gramatica P, Chirico N, Papa E, Cassani S, Kovarich S (2013) QSARINS: a new software for the development, analysis, and validation of QSAR MLR models. J Comput Chem 34:2121–2132. https://doi.org/10.1002/jcc.23361

Article  CAS  Google Scholar 

Gramatica P, Cassani S, Chirico N (2014) QSARINS-chem: Insubria datasets and new QSAR/QSPR models for environmental pollutants in QSARINS. J Comput Chem 35:1036–1044. https://doi.org/10.1002/jcc.23576

Article  CAS  PubMed  Google Scholar 

Fan J, de Lannoy IAM (2014) Pharmacokinetics. Biochem Pharmacol 87:93–120. https://doi.org/10.1016/j.bcp.2013.09.007

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif