Muyumba NW, Mutombo SC, Sheridan H, Nachtergael A, Duez P (2021) Quality control of herbal drugs and preparations: the methods of analysis, their relevance and applications. Talanta Open 4:100070. https://doi.org/10.1016/j.talo.2021.100070
World Health Organization (WHO) (2005) National policy on traditional medicine and regulation of herbal medicines. Report of WHO Global Survey, Geneva
Gong F, Wang BT, Chau FT et al (2005) Data preprocessing for chromatographic fingerprint of herbal medicine with chemometric approaches. Anal Lett 38:2475–2492. https://doi.org/10.1080/00032710500318338
Khare CP (2016) Ayurvedic pharmacopoeial plant drugs—expanded therapeutics. CRC Press, Taylor & Francis Group, Boca Raton
Khare CP (2007) Indian medicinal plants—an illustrated dictionary. Springer, Berlin
Perry LM (1980) Medicinal plants of east and south-east Asia: attributed properties and uses. MIT Press, Cambridge
Kirtikar KR, Basu BD (2001) Indian medicinal plants, vol 10, 2nd edn. Oriental Enterprises, Dehradun
Chopra RN (1969) Glossary of Indian medicinal plants. Academic Publishers, New Delhi
Haque ME, Haque M, Rahman MM et al (2004) E-octadec-7-en-5-ynoic acid from the roots of Capparis zeylanica. Fitoterapia 75(2):130–133. https://doi.org/10.1016/j.fitote.2003.11.004
Article CAS PubMed Google Scholar
Sharaf M, El-Ansari MA, Saleh NAM (1997) Flavonoids of four Cleome and three Capparis species. Biochem Syst Ecol 25:161–166. https://doi.org/10.1016/S0305-1978(96)00099-3
Sini KR, Sinha BN, Rajasekaran A (2011) Protective effects of Capparis zeylanica Linn. leaf extract on gastric lesions in experimental animals. Avicenna J Med Biotechnol 3(1):31–35
PubMed PubMed Central Google Scholar
Sini KR, Sinha BN, Rajasekaran A (2011) Antidiarrheal activity of Capparis zeylanica leaf extracts. J Adv Pharm Technol Res 2(1):39–42. https://doi.org/10.4103/2231-4040.79803
Article PubMed PubMed Central Google Scholar
Arulmozhi P, Vijayakumar S, Kumar T (2018) Phytochemical analysis and antimicrobial activity of some medicinal plants against selected pathogenic microorganisms. Microb Pathog 123:219–226. https://doi.org/10.1016/j.micpath.2018.07.009
Article CAS PubMed Google Scholar
Arulmozhi P, Vijayakumar S, Praseetha PK et al (2019) Extraction methods and computational approaches for evaluation of antimicrobial compounds from Capparis zeylanica L. Anal Biochem 572:33–44. https://doi.org/10.1016/j.ab.2019.02.006
Article CAS PubMed Google Scholar
Nilavukkarasi M, Vijayakumar S, Prathipkumar S (2020) Capparis zeylanica mediated bio-synthesized ZnO nanoparticles as antimicrobial, photocatalytic and anti-cancer applications. Mater Sci Energy Technol 3:335–343. https://doi.org/10.1016/j.mset.2019.12.004
Nilavukkarasi M, Vijayakumar S, Kalaskar M et al (2022) Capparis zeylanica L. conjugated TiO2 nanoparticles as bio-enhancers for antimicrobial and chronic wound repair. Biochem Biophys Res Commun 623:127–132. https://doi.org/10.1016/j.bbrc.2022.07.064
Article CAS PubMed Google Scholar
Ghule BV, Murugananthan G, Nakhat PD et al (2006) Immunostimulant effects of Capparis zeylanica Linn. Leaves J Ethnopharmacol 108(2):311–315. https://doi.org/10.1016/j.jep.2006.03.041
Article CAS PubMed Google Scholar
Ghule BV, Murugananthan G, Yeole PG (2007) Analgesic and antipyretic effects of Capparis zeylanica leaves. Fitoterapia 78(5):365–369. https://doi.org/10.1016/j.fitote.2007.02.003
Article CAS PubMed Google Scholar
Solanki R, Chaudhary AK, Singh R (2012) Effect of leaf extract of Capparis zeylanica Linn. on spatial learning and memory in rats. J Nat Med 66(4):600–607. https://doi.org/10.1007/s11418-012-0626-2
Venkataswamy M, Karunakaran RS, Islam MS et al (2023) Capparis zeylanica L root extract promotes apoptosis and cell cycle arrest, inhibits epithelial-to-mesenchymal transition and triggers E-cadherin expression in breast cancer cell lines. 3 Biotech 13(2):41. https://doi.org/10.1007/s13205-023-03461-x
Article PubMed PubMed Central Google Scholar
Mallepogu V, Sankaran KR, Pasala C et al (2023) Ursolic acid regulates key EMT transcription factors, induces cell cycle arrest and apoptosis in MDA-MB-231 and MCF-7 breast cancer cells, an in-vitro and in silico studies. J Cell Biochem. https://doi.org/10.1002/jcb.30496
Harborne JB (1984) Phytochemical methods—a guide to modern techniques of plant analysis, 2nd edn. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5570-7
Rahmani S, Naraki K, Roohbakhsh A et al (2022) The protective effects of rutin on the liver, kidneys, and heart by counteracting organ toxicity caused by synthetic and natural compounds. Food Sci Nutr 11(1):39–56. https://doi.org/10.1002/fsn3.3041
Article CAS PubMed PubMed Central Google Scholar
Muvhulawa N, Dludla PV, Ziqubu K et al (2022) Rutin ameliorates inflammation and improves metabolic function: a comprehensive analysis of scientific literature. Pharmacol Res 178:106163. https://doi.org/10.1016/j.phrs.2022.106163
Article CAS PubMed Google Scholar
Hu Y, Jia K, Zhou Y et al (2023) Rutin hydrate relieves neuroinflammation in zebrafish models: involvement of NF-κB pathway as a central network. Fish Shellfish Immunol 141:109062. https://doi.org/10.1016/j.fsi.2023.109062
Article CAS PubMed Google Scholar
Rana AK, Sharma S, Saini SK et al (2022) Rutin protects hemorrhagic stroke development via supressing oxidative stress and inflammatory events in a zebrafish model. Eur J Pharmacol 925:174973. https://doi.org/10.1016/j.ejphar.2022.174973
Article CAS PubMed Google Scholar
Cai C, Cheng W, Shi T et al (2023) Rutin alleviates colon lesions and regulates gut microbiota in diabetic mice. Sci Rep 13(1):4897. https://doi.org/10.1038/s41598-023-31647-z
Article CAS PubMed PubMed Central Google Scholar
Mazik M (2022) Promising therapeutic approach for SARS-CoV-2 infections by using a rutin-based combination therapy. Chem Med Chem 17(11):e202200157. https://doi.org/10.1002/cmdc.202200157
Article CAS PubMed Google Scholar
Erdogan E, Ilgaz Y, Gurgor PN et al (2015) Rutin ameliorates methotrexate induced hepatic injury in rats. Acta Cir Bras 30(11):778–784. https://doi.org/10.1590/S0102-865020150110000009
Perera N, Liolitsa D, Iype S et al (2012) Phlebotonics for haemorrhoids. Cochrane Database Syst Rev 8:CD004322. https://doi.org/10.1002/14651858.CD004322.pub3
Morling JR, Yeoh SE, Kolbach DN (2015) Rutosides for prevention of post-thrombotic syndrome. Cochrane Database Syst Rev 9:CD005626. https://doi.org/10.1002/14651858.CD005626.pub3
Reich E, Schibli A (2007) High performance thin layer chromatography for the analysis of medicinal plants. Thieme Medical Publishers, New York
ICH, Q2B (1996) Validation of analytical procedure: methodology. In: Proceedings of the International conference on harmonization, Geneva, March https://database.ich.org/sites/default/files/Q2%28R1%29%20Guideline.pdf. Accessed May 2023.
Kreft S, Knapp M, Kreft I (1999) Extraction of rutin from buckwheat (Fagopyrum esculentum Moench) seeds and determination by capillary electrophoresis. J Agric Food Chem 47:4649–4652. https://doi.org/10.1021/jf990186p
Article CAS PubMed Google Scholar
Sofic E, Copra-Janicijevic A, Salihovic M et al (2010) Screening of medicinal plant extracts for quercetin-3-rutinoside (rutin) in Bosnia and Herzegovina. Med Plants 2(2):97–102. https://doi.org/10.5958/j.0975-4261.2.2.015
Asgharian S, Hojjati MR, Ahrari M et al (2020) Ruta graveolens and rutin, as its major compound: investigating their effect on spatial memory and passive avoidance memory in rats. Pharm Biol 58(1):447–453. https://doi.org/10.1080/13880209.2020.1762669
Article CAS PubMed PubMed Central Google Scholar
Selvaraj K, Chowdhury R, Bhattacharjee C (2013) Isolation and structural elucidation of flavonoids from aquatic fern Azolla microphylia and evaluation of free radical scavenging activity. Int J Pharm Pharm Sci 5:743–749
Yingyuen P, Sukrong S, Phisalaphong M (2020) Isolation, separation and purification of rutin from Banana leaves (Musa balbisiana). Ind Crops Prod 149:112307. https://doi.org/10.1016/j.indcrop.2020.112307
Pivec T, Kargl MU et al (2019) Chemical structure-antioxidant activity relationship of water-based enzymatic polymerized rutin and its wound healing potential. Polymers (Basel) 11(10):1566. https://doi.org/10.3390/polym11101566
Comments (0)