Ntali G, Capatina C, Grossman A, Karavitaki N (2014) Clinical review: Functioning gonadotroph adenomas. J Clin Endocrinol Metab 99:4423–4433. https://doi.org/10.1210/jc.2014-2362
Article CAS PubMed Google Scholar
Drummond J, Roncaroli F, Grossman AB, Korbonits M (2019) Clinical and Pathological Aspects of Silent Pituitary Adenomas. J Clin Endocrinol Metab 104:2473–2489. https://doi.org/10.1210/jc.2018-00688
Mete O, Lopes MB (2017) Overview of the 2017 WHO Classification of Pituitary Tumors. Endocr Pathol 28:228–243. https://doi.org/10.1007/s12022-017-9498-z
Article CAS PubMed Google Scholar
Asa SL, Mete O, Perry A, Osamura RY (2022) Overview of the 2022 WHO Classification of Pituitary Tumors. Endocr Pathol 33:6–26. https://doi.org/10.1007/s12022-022-09703-7
Article CAS PubMed Google Scholar
Mete O, Cintosun A, Pressman I, Asa SL (2018) Epidemiology and biomarker profile of pituitary adenohypophysial tumors. Mod Pathol 31:900–909. https://doi.org/10.1038/s41379-018-0016-8
Article CAS PubMed Google Scholar
Villa C, Vasiljevic A, Jaffrain-Rea ML, Ansorge O, Asioli S, Barresi V, Chinezu L, Gardiman MP, Lania A, Lapshina AM, Poliani L, Reiniger L, Righi A, Saeger W, Soukup J, Theodoropoulou M, Uccella S, Trouillas J, Roncaroli F (2019) A standardised diagnostic approach to pituitary neuroendocrine tumours (PitNETs): a European Pituitary Pathology Group (EPPG) proposal. Virchows Arch 475:687–692. https://doi.org/10.1007/s00428-019-02655-0
Article CAS PubMed Google Scholar
Nishioka H, Inoshita N, Mete O, Asa SL, Hayashi K, Takeshita A, Fukuhara N, Yamaguchi-Okada M, Takeuchi Y, Yamada S (2015) The Complementary Role of Transcription Factors in the Accurate Diagnosis of Clinically Nonfunctioning Pituitary Adenomas. Endocr Pathol 26:349–355. https://doi.org/10.1007/s12022-015-9398-z
Article CAS PubMed Google Scholar
Spada A, Mantovani G, Lania AG, Treppiedi D, Mangili F, Catalano R, Carosi G, Sala E, Peverelli E (2022) Pituitary Tumors: Genetic and Molecular Factors Underlying Pathogenesis and Clinical Behavior. Neuroendocrinology 112:15–33. https://doi.org/10.1159/000514862
Article CAS PubMed Google Scholar
Greenman Y, Bronstein MD (2021) Cabergoline should be attempted in progressing non-functioning pituitary macroadenoma. Eur J Endocrinol 185:D11–D20. https://doi.org/10.1530/EJE-21-0344
Article CAS PubMed Google Scholar
Even-Zohar N, Greenman Y (2022) Current medical treatment and perspective in gonadotroph tumors. Best Pract Res Clin Endocrinol Metab 36:101685. https://doi.org/10.1016/j.beem.2022.101685
Pivonello R, Matrone C, Filippella M, Cavallo LM, Di Somma C, Cappabianca P, Colao A, Annunziato L, Lombardi G (2004) Dopamine receptor expression and function in clinically nonfunctioning pituitary tumors: comparison with the effectiveness of cabergoline treatment. J Clin Endocrinol Metab 89:1674–1683. https://doi.org/10.1210/jc.2003-030859
Article CAS PubMed Google Scholar
Vieira Neto L, Wildemberg LE, Moraes AB, Colli LM, Kasuki L, Marques NV, Gasparetto EL, de Castro M, Takiya CM, Gadelha MR (2015) Dopamine receptor subtype 2 expression profile in nonfunctioning pituitary adenomas and in vivo response to cabergoline therapy. Clin Endocrinol (Oxf) 82:739–746. https://doi.org/10.1111/cen.12684
Article CAS PubMed Google Scholar
Greenman Y, Cooper O, Yaish I, Robenshtok E, Sagiv N, Jonas-Kimchi T, Yuan X, Gertych A, Shimon I, Ram Z, Melmed S, Stern N (2016) Treatment of clinically nonfunctioning pituitary adenomas with dopamine agonists. Eur J Endocrinol 175:63–72. https://doi.org/10.1530/EJE-16-0206
Article CAS PubMed Google Scholar
Vierimaa O, Georgitsi M, Lehtonen R, Vahteristo P, Kokko A, Raitila A, Tuppurainen K, Ebeling TML, Salmela PI, Paschke R, Gündogdu S, De Menis E, Mäkinen MJ, Launonen V, Karhu A, Aaltonen LA (2006) Pituitary adenoma predisposition caused by germline mutations in the AIP gene. Science 312:1228–1230. https://doi.org/10.1126/science.1126100
Article CAS PubMed Google Scholar
Beckers A, Aaltonen LA, Daly AF, Karhu A (2013) Familial isolated pituitary adenomas (FIPA) and the pituitary adenoma predisposition due to mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene. Endocr Rev 34:239–277. https://doi.org/10.1210/er.2012-1013
Article CAS PubMed PubMed Central Google Scholar
Srirangam Nadhamuni V, Korbonits M (2020) Novel Insights into Pituitary Tumorigenesis: Genetic and Epigenetic Mechanisms. Endocr Rev 41:821–846. https://doi.org/10.1210/endrev/bnaa006
Article PubMed PubMed Central Google Scholar
Leontiou CA, Gueorguiev M, van der Spuy J, Quinton R, Lolli F, Hassan S, Chahal HS, Igreja SC, Jordan S, Rowe J, Stolbrink M, Christian HC, Wray J, Bishop-Bailey D, Berney DM, Wass JAH, Popovic V, Ribeiro-Oliveira A, Gadelha MR, Monson JP, Akker SA, Davis JRE, Clayton RN, Yoshimoto K, Iwata T, Matsuno A, Eguchi K, Musat M, Flanagan D, Peters G, Bolger GB, Chapple JP, Frohman LA, Grossman AB, Korbonits M (2008) The role of the aryl hydrocarbon receptor-interacting protein gene in familial and sporadic pituitary adenomas. J Clin Endocrinol Metab 93:2390–2401. https://doi.org/10.1210/jc.2007-2611
Article CAS PubMed Google Scholar
Jaffrain-Rea M-L, Angelini M, Gargano D, Tichomirowa MA, Daly AF, Vanbellinghen J-F, D’Innocenzo E, Barlier A, Giangaspero F, Esposito V, Ventura L, Arcella A, Theodoropoulou M, Naves LA, Fajardo C, Zacharieva S, Rohmer V, Brue T, Gulino A, Cantore G, Alesse E, Beckers A (2009) Expression of aryl hydrocarbon receptor (AHR) and AHR-interacting protein in pituitary adenomas: pathological and clinical implications. Endocr Relat Cancer 16:1029–1043. https://doi.org/10.1677/ERC-09-0094
Article CAS PubMed Google Scholar
Kasuki Jomori de Pinho L, Vieira Neto L, Armondi Wildemberg LE, Gasparetto EL, Marcondes J, de Almeida Nunes B, Takiya CM, Gadelha MR (2011) Low aryl hydrocarbon receptor-interacting protein expression is a better marker of invasiveness in somatotropinomas than Ki-67 and p53. Neuroendocrinology 94:39–48. https://doi.org/10.1159/000322787
Fratticci A, Grieco FA, Spilioti C, Giangaspero F, Ventura L, Esposito V, Piccirilli M, Santoro A, Gulino A, Cantore G, Alesse E, Jaffrain-Rea ML (2007) Differential expression of neurogenins and NeuroD1 in human pituitary tumours. J Endocrinol 194:475–484. https://doi.org/10.1677/JOE-07-0020
Article CAS PubMed Google Scholar
Jaffrain-Rea M-L, Rotondi S, Turchi A, Occhi G, Barlier A, Peverelli E, Rostomyan L, Defilles C, Angelini M, Oliva M-A, Ceccato F, Maiorani O, Daly AF, Esposito V, Buttarelli F, Figarella-Branger D, Giangaspero F, Spada A, Scaroni C, Alesse E, Beckers A (2013) Somatostatin analogues increase AIP expression in somatotropinomas, irrespective of Gsp mutations. Endocr Relat Cancer 20:753–766. https://doi.org/10.1530/ERC-12-0322
Article CAS PubMed Google Scholar
Haddad AF, Young JS, Oh T, Pereira MP, Joshi RS, Pereira KM, Osorio RC, Donohue KC, Peeran Z, Sudhir S, Jain S, Beniwal A, Chopra AS, Sandhu NS, Theodosopoulos PV, Kunwar S, El-Sayed IH, Gurrola J, Blevins LS, Aghi MK (2020) Clinical characteristics and outcomes of null-cell versus silent gonadotroph adenomas in a series of 1166 pituitary adenomas from a single institution. Neurosurg Focus 48:E13. https://doi.org/10.3171/2020.3.FOCUS20114
Hickman RA, Bruce JN, Otten M, Khandji AG, Flowers XE, Siegelin M, Lopes B, Faust PL, Freda PU (2021) Gonadotroph tumours with a low SF-1 labelling index are more likely to recur and are associated with enrichment of the PI3K-AKT pathway. Neuropathol Appl Neurobiol 47:415–427. https://doi.org/10.1111/nan.12675
Article CAS PubMed Google Scholar
Neou M, Villa C, Armignacco R, Jouinot A, Raffin-Sanson M-L, Septier A, Letourneur F, Diry S, Diedisheim M, Izac B, Gaspar C, Perlemoine K, Verjus V, Bernier M, Boulin A, Emile J-F, Bertagna X, Jaffrezic F, Laloe D, Baussart B, Bertherat J, Gaillard S, Assié G (2020) Pangenomic Classification of Pituitary Neuroendocrine Tumors. Cancer Cell 37:123-134.e5. https://doi.org/10.1016/j.ccell.2019.11.002
Article CAS PubMed Google Scholar
Kaiser UB, Halvorson LM, Chen MT (2000) Sp1, steroidogenic factor 1 (SF-1), and early growth response protein 1 (egr-1) binding sites form a tripartite gonadotropin-releasing hormone response element in the rat luteinizing hormone-beta gene promoter: an integral role for SF-1. Mol Endocrinol 14:1235–1245. https://doi.org/10.1210/mend.14.8.0507
Article CAS PubMed Google Scholar
Brown P, Mcneilly AS (1997) Steroidogenic factor-1 (SF-1) and the regulation of expression of luteinising hormone and follicle stimulating hormone b-subunits in the sheep anterior pituitary in vivo. Int J Biochem Cell Biol 29:1513–1524. https://doi.org/10.1016/s1357-2725(97)00082-4
Article CAS PubMed Google Scholar
Bakke M, Zhao L, Hanley NA, Parker KL (2000) Approaches to define the role of SF-1 at different levels of the hypothalamic-pituitary-steroidogenic organ axis. Endocr Res 26:1067–1073. https://doi.org/10.3109/07435800009048639
Article CAS PubMed Google Scholar
Mahesh VB, Brann DW (1998) Neuroendocrine mechanisms underlying the control of gonadotropin secretion by steroids. Steroids 63:252–256. https://doi.org/10.1016/s0039-128x(98)00031-2
Article CAS PubMed Google Scholar
Aylwin SJ, Welch JP, Davey CL, Geddes JF, Wood DF, Besser GM, Grossman AB, Monson JP, Burrin JM (2001) The relationship between steroidogenic factor 1 and DAX-1 expression and in vitro gonadotropin secretion in human pituitary adenomas. J Clin Endocrinol Metab 86:2476–2483. https://doi.org/10.1210/jcem.86.6.7531
Article CAS PubMed Google Scholar
Fortin J, Kumar V, Zhou X, Wang Y, Auwerx J, Schoonjans K, Boehm U, Boerboom D, Bernard DJ (2013) NR5A2 regulates Lhb and Fshb transcription in gonadotrope-like cells in vitro, but is dispensable for gonadotropin synthesis and fertility in vivo. PLoS One 8:e59058. https://doi.org/10.1371/journal.pone.0059058
Comments (0)