Artificial Intelligence Detected the Relationship Between Nuclear Morphological Features and Molecular Abnormalities of Papillary Thyroid Carcinoma

Lloyd RV, Osamura RY, Klöppel G, Rosai J: WHO Classification of Tumours of Endocrine Organs: International Agency for Research on Cancer, 2017.

Baloch ZW, Asa SL, Barletta JA, Ghossein RA, Juhlin CC, Jung CK, LiVolsi VA, Papotti MG, Sobrinho-Simões M, Tallini G, Mete O (2022) Overview of the 2022 WHO Classification of Thyroid Neoplasms. Endocr Pathol 33(1):27-63. https://doi.org/10.1007/s12022-022-09707-3

Niu D, Murata S, Kondo T, Nakazawa T, Kawasaki T, Ma D, Yamane T, Nakamura N, Katoh R (2009) Involvement of centrosomes in nuclear irregularity of thyroid carcinoma cells. Virchows Arch 455(2):149-57. https://doi.org/10.1007/s00428-009-0802-2

Murata S, Nakazawa T, Ohno N, Terada N, Iwashina M, Mochizuki K, Kondo T, Nakamura N, Yamane T, Iwasa S, Ohno S, Katoh R (2007) Conservation and alteration of chromosome territory arrangements in thyroid carcinoma cell nuclei. Thyroid 17(6):489-96. https://doi.org/10.1089/thy.2006.0328

Lewiński A, Adamczewski Z, Zygmunt A, Markuszewski L, Karbownik-Lewińska M, Stasiak M (2019) Correlations between Molecular Landscape and Sonographic Image of Different Variants of Papillary Thyroid Carcinoma. J Clin Med 8(11):1916. https://doi.org/10.3390/jcm8111916

Adeniran AJ, Zhu Z, Gandhi M, Steward DL, Fidler JP, Giordano TJ, Biddinger PW, Nikiforov YE (2006) Correlation between genetic alterations and microscopic features, clinical manifestations, and prognostic characteristics of thyroid papillary carcinomas. Am J Surg Pathol 30(2):216-22. https://doi.org/10.1097/01.pas.0000176432.73455.1b

Tsou P, Wu CJ (2019) Mapping Driver Mutations to Histopathological Subtypes in Papillary Thyroid Carcinoma: Applying a Deep Convolutional Neural Network. J Clin Med 14;8(10):1675. https://doi.org/10.3390/jcm8101675

Anand D, Yashashwi K, Kumar N, Rane S, Gann PH, Sethi A (2021) Weakly supervised learning on unannotated H&E-stained slides predicts BRAF mutation in thyroid cancer with high accuracy. J Pathol 255(3):232-242. https://doi.org/10.1002/path.5773

Kim JK, Seong CY, Bae IE, Yi JW, Yu HW, Kim SJ, Won JK, Chai YJ, Choi JY, Lee KE (2018) Comparison of Immunohistochemistry and Direct Sequencing Methods for Identification of the BRAFV600E Mutation in Papillary Thyroid Carcinoma. Ann Surg Oncol 25(6):1775-1781. https://doi.org/10.1245/s10434-018-6460-3

Soares P, Trovisco V, Rocha AS, Lima J, Castro P, Preto A, Máximo V, Botelho T, Seruca R, Sobrinho-Simões M (2003) BRAF mutations and RET/PTC rearrangements are alternative events in the etiopathogenesis of PTC. Oncogene 17;22(29):4578–80. https://doi.org/10.1038/sj.onc.1206706

Caicedo JC, Goodman A, Karhohs KW, Cimini BA, Ackerman J, Haghighi M, Heng C, Becker T, Doan M, McQuin C, Rohban M, Singh S, Carpenter AE (2019) Nucleus segmentation across imaging experiments: the 2018 Data Science Bowl. Nat Methods 16(12):1247-1253. https://doi.org/10.1038/s41592-019-0612-7

Tan M, Le QV (2019) EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. ed.^, eds. 36th International Conference on Machine Learning, ICML 2019. International Machine Learning Society (IMLS), 2019; 10691–10700. https://doi.org/10.48550/arXiv.1905.11946

Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. ed.^, eds. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5–9, 2015, Proceedings, Part III 18. Springer, 2015; 234–241. https://doi.org/10.48550/arXiv.1505.04597

Vaickus LJ, Suriawinata AA, Wei JW, Liu X (2019) Automating the Paris System for urine cytopathology-A hybrid deep-learning and morphometric approach. Cancer Cytopathol 127(2):98-115. https://doi.org/10.1002/cncy.22099

Wang H, Wang Z, Du Met al. (2020) Score-CAM: Score-Weighted Visual Explanations for Convolutional Neural Networks. ed.^, eds. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. IEEE Computer Society 111–119. https://doi.org/10.48550/arXiv.1910.01279

Jung CK, Bychkov A, Kakudo K (2022) Update from the 2022 World Health Organization Classification of Thyroid Tumors: A Standardized Diagnostic Approach. Endocrinol Metab (Seoul) 37(5):703-718. https://doi.org/10.3803/EnM.2022.1553

Pizzimenti C, Fiorentino V, Ieni A, Martini M, Tuccari G, Lentini M, Fadda G (2022) Aggressive variants of follicular cell-derived thyroid carcinoma: an overview. Endocrine78(1):1-12. https://doi.org/10.1007/s12020-022-03146-0

Murata SI, Matsuzaki I, Kishimoto M, Katsuki N, Onishi T, Hirokawa M, Kojima F (2023) Papillary thyroid carcinoma with aggressive fused follicular and solid growth pattern: A unique histological subtype with high-grade malignancy? Pathol Int 73(5):207-211. https://doi.org/10.1111/pin.13323

Jeon MJ, Chun SM, Kim D, Kwon H, Jang EK, Kim TY, Kim WB, Shong YK, Jang SJ, Song DE, Kim WG (2016) Genomic Alterations of Anaplastic Thyroid Carcinoma Detected by Targeted Massive Parallel Sequencing in a BRAF(V600E) Mutation-Prevalent Area. Thyroid 26(5):683-90. https://doi.org/10.1089/thy.2015.0506

Xing M, Alzahrani AS, Carson KA, Shong YK, Kim TY, Viola D, Elisei R, Bendlová B, Yip L, Mian C, Vianello F, Tuttle RM, Robenshtok E, Fagin JA, Puxeddu E, Fugazzola L, Czarniecka A, Jarzab B, O'Neill CJ, Sywak MS, Lam AK, Riesco-Eizaguirre G, Santisteban P, Nakayama H, Clifton-Bligh R, Tallini G, Holt EH, Sýkorová V (2015) Association between BRAF V600E mutation and recurrence of papillary thyroid cancer. J Clin Oncol 33(1):42-50. https://doi.org/10.1200/JCO.2014.56.8253

Wirth LJ, Sherman E, Robinson B, Solomon B, Kang H, Lorch J, Worden F, Brose M, Patel J, Leboulleux S, Godbert Y, Barlesi F, Morris JC, Owonikoko TK, Tan DSW, Gautschi O, Weiss J, de la Fouchardière C, Burkard ME, Laskin J, Taylor MH, Kroiss M, Medioni J, Goldman JW, Bauer TM, Levy B, Zhu VW, Lakhani N, Moreno V, Ebata K, Nguyen M, Heirich D, Zhu EY, Huang X, Yang L, Kherani J, Rothenberg SM, Drilon A, Subbiah V, Shah MH, Cabanillas ME (2020) Efficacy of Selpercatinib in RET-Altered Thyroid Cancers. N Engl J Med 27;383(9):825–835. https://doi.org/10.1056/NEJMoa2005651

Nishikawa T, Iwamoto R, Matsuzaki I, Musangile FY, Takahashi A, Mikasa Y, Takahashi Y, Kojima F, Murata SI (2022) Pathologic Image Classification of Flat Urothelial Lesions Using Pathologic Criteria-Based Deep Learning. Am J Clin Pathol 158(6):759-769. https://doi.org/10.1093/ajcp/aqac117

Murata SI, Kuroda M, Kawamura N, Warigaya K, Musangile FY, Matsuzaki I, Kojima F (2021) Microtubule-organizing center-mediated structural atypia in low- and high-grade urothelial carcinoma. Virchows Arch 478(2):327-334. https://doi.org/10.1007/s00428-020-02895-5

Schwertheim S, Theurer S, Jastrow H, Herold T, Ting S, Westerwick D, Bertram S, Schaefer CM, Kälsch J, Baba HA, Schmid KW (2019) New insights into intranuclear inclusions in thyroid carcinoma: Association with autophagy and with BRAFV600E mutation. PLoS One 16;14(12):e0226199. https://doi.org/10.1371/journal.pone.0226199

Lloyd RV, Erickson LA, Casey MB, Lam KY, Lohse CM, Asa SL, Chan JK, DeLellis RA, Harach HR, Kakudo K, LiVolsi VA, Rosai J, Sebo TJ, Sobrinho-Simoes M, Wenig BM, Lae ME (2004) Observer variation in the diagnosis of follicular variant of papillary thyroid carcinoma. Am J Surg Pathol 28(10):1336-40. https://doi.org/10.1097/01.pas.0000135519.34847.f6

Saxén E, Franssila K, Bjarnason O, Normann T, Ringertz N (1978) Observer variation in histologic classification of thyroid cancer. Acta Pathol Microbiol Scand A. 86A(6):483-6. https://doi.org/10.1111/j.1699-0463.1978.tb02073.x

Elisei R, Romei C, Vorontsova T, Cosci B, Veremeychik V, Kuchinskaya E, Basolo F, Demidchik EP, Miccoli P, Pinchera A, Pacini F (2001) RET/PTC rearrangements in thyroid nodules: studies in irradiated and not irradiated, malignant and benign thyroid lesions in children and adults. J Clin Endocrinol Metab 86(7):3211-6. https://doi.org/10.1210/jcem.86.7.7678

Comments (0)

No login
gif