Sex bias in celiac disease: XWAS and monocyte eQTLs in women identify TMEM187 as a functional candidate gene

Lindfors K, Ciacci C, Kurppa K, Lundin KEA, Makharia GK, Mearin ML, et al. Coeliac disease. Nat Rev Dis Primers. 2019;5(1):3.

Article  PubMed  Google Scholar 

Singh P, Arora A, Strand TA, Leffler DA, Catassi C, Green PH, et al. Global prevalence of celiac disease: systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2018;16(6):823-836.e2.

Article  PubMed  Google Scholar 

Jansson-Knodell CL, Hujoel IA, West CP, Taneja V, Prokop LJ, Rubio-Tapia A, et al. Sex difference in celiac disease in undiagnosed populations: a systematic review and meta-analysis. Clin Gastroenterol Hepat. 2019;17(10):1954-1968.e13.

Article  Google Scholar 

Karell K, Louka AS, Moodie SJ, Ascher H, Clot F, Greco L, et al. HLA types in celiac disease patients not carrying the DQA1 *05-DQB1 *02 (DQ2) heterodimer: results from the European genetics cluster on celiac disease. Hum Immunol. 2003;64(4):469–77.

Article  PubMed  CAS  Google Scholar 

Bevan S, Popat S, Braegger CP, Busch D, Odonoghue A, Falth-Magnusson K, Ferguson A, et al. Contribution of the MHC region to the familial risk of coeliac disease. J Med Genet. 1999;36(9):687–90.

PubMed  PubMed Central  CAS  Google Scholar 

Dubois PCA, Trynka G, Franke L, Hunt KA, Romanos J, Curtotti A, et al. Multiple common variants for celiac disease influencing immune gene expression. Nat Genet. 2010;42(4):295–302.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Trynka G, Hunt KA, Bockett NA, Romanos J, Mistry V, Szperl A, et al. Dense genotyping identifies and localizes multiple common and rare variant association signals in celiac disease. Nat Genet. 2011;43(12):1193–201.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Garcia-Etxebarria K, Jauregi-Miguel A, Romero-Garmendia I, Plaza-Izurieta L, Legarda M, Irastorza I, et al. Ancestry-based stratified analysis of Immunochip data identifies novel associations with celiac disease. Eur J Hum Genet. 2016;24(12):1831–4.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gallagher MD, Chen-Plotkin AS. The post-GWAS era: from association to function. Am J Hum Genet. 2018;102(5):717–30.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gutierrez-Achury J, Zhernakova A, Pulit SL, Trynka G, Hunt KA, Romanos J, et al. Fine mapping in the MHC region accounts for 18% additional genetic risk for celiac disease. Nat Genet. 2015;47(6):577–8.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chang D, Gao F, Slavney A, Ma L, Waldman YY, Sams AJ, et al. Accounting for eXentricities: analysis of the X chromosome in GWAS reveals X-linked genes implicated in autoimmune diseases. PLoS ONE. 2014;9(12): e113684.

Article  PubMed  PubMed Central  Google Scholar 

Li YR, Li J, Zhao SD, Bradfield JP, Mentch FD, Maggadottir SM, et al. Meta-analysis of shared genetic architecture across ten pediatric autoimmune diseases. Nat Med. 2015;21(9):1018–27.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wise AL, Gyi L, Manolio TA. eXclusion: toward integrating the X chromosome in genome-wide association analyses. Am J Hum Genet. 2013;92(5):643–7.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wegiel M, Antosz A, Gieburowska J, Szeliga K, Hankus M, Grzybowska-Chlebowczyk U, et al. Autoimmunity predisposition in girls with turner syndrome. Front Endocrinol. 2019;10:511.

Article  Google Scholar 

Harris VM, Sharma R, Cavett J, Kurien BT, Liu K, Koelsch KA, et al. Klinefelter’s syndrome (47, XXY) is in excess among men with Sjögren’s syndrome. Clin Immunol. 2016;168:25–9.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Liu K, Kurien BT, Zimmerman SL, Kaufman KM, Taft DH, Kottyan LC, et al. X chromosome dose and sex bias in autoimmune diseases: increased prevalence of 47, XXX in systemic Lupus erythematosus and Sjögren’s syndrome. Arthritis Rheumatol. 2016;68(5):1290–300.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Scofield RH, Bruner GR, Namjou B, Kimberly RP, Ramsey-Goldman R, Petri M, et al. Klinefelter’s syndrome (47, XXY) in male systemic lupus erythematosus patients: support for the notion of a gene-dose effect from the X chromosome. Arthritis Rheum. 2008;58(8):2511–7.

Article  PubMed  PubMed Central  Google Scholar 

Fish EN. The X-files in immunity: sex-based differences predispose immune responses. Nat Rev Immunol. 2008;8(9):737–44.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bianchi I, Lleo A, Gershwin ME, Invernizzi P. The X chromosome and immune associated genes. J Autoimmun. 2012;38(2–3):J187–92.

Article  PubMed  CAS  Google Scholar 

Serbina NV, Jia T, Hohl TM, Pamer EG. Monocyte-mediated defense against microbial pathogens. Annu Rev Immunol. 2008;26:421–52.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cinova J, Palová-Jelínková L, Smythies LE, Cerná M, Pecharová B, Dvorák M, et al. Gliadin peptides activate blood monocytes from patients with celiac disease. J Clin Immunol. 2007;27(2):201–9.

Article  PubMed  CAS  Google Scholar 

Jelínková L, Tucková L, Cinová J, Flegelová Z, Tlaskalová-Hogenová H. Gliadin stimulates human monocytes to production of IL-8 and TNF-alpha through a mechanism involving NF-kappaB. FEBS Lett. 2004;571(1–3):81–5.

Article  PubMed  Google Scholar 

Palová-Jelínková L, Dáňová K, Drašarová H, Dvořák M, Funda DP, Fundová P et al. Pepsin digest of wheat gliadin fraction increases production of IL-1β via TLR4/MyD88/TRIF/MAPK/NF-κB signaling pathway and an NLRP3 inflammasome activation. PLoS ONE. 2013; 8(4):e62426.

Fairfax BP, Humburg P, Makino S, Naranbhai V, Wong D, Lau E, et al. Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression. Science. 2014;343(6175):1246949.

Article  PubMed  PubMed Central  Google Scholar 

Zhu Z, Zhang F, Hu H, Bakshi A, Robinson MR, Powell JE, et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat Genet. 2016;48(5):481–7.

Article  PubMed  CAS  Google Scholar 

Fernandez-Jimenez N, Bilbao JR. Mendelian randomization analysis of celiac GWAS reveals a blood expression signature with diagnostic potential in absence of gluten consumption. Hum Mol Genet. 2019;28(18):3037–42.

Article  PubMed  PubMed Central  CAS  Google Scholar 

van der Graaf A, Zorro MM, Claringbould A, Võsa U, Aguirre-Gamboa R, Li C, et al. Systematic prioritization of candidate genes in disease loci identifies TRAFD1 as a master regulator of IFNγ signaling in celiac disease. Front Genet. 2020;11: 562434.

Article  PubMed  Google Scholar 

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–75.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Das S, Forer L, Schönherr S, Sidore C, Locke AE, Kwong A, et al. Next-generation genotype imputation service and methods. Nat Genet. 2016;48(10):1284–7.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Marchini J, Howie B, Myers S, McVean G, Donnelly P. A new multipoint method for genome-wide association studies by imputation of genotypes. Nat Genet. 2007;39(7):906–13.

Article  PubMed  CAS  Google Scholar 

Gao X, Starmer J, Martin ER. A multiple testing correction method for genetic association studies using correlated single nucleotide polymorphisms. Genet Epidemiol. 2008;32(4):361–9.

Article  PubMed  Google Scholar 

Turner DS. qqman: an R package for visualizing GWAS results using Q-Q and manhattan plots. J Open Source Softw. 2018;3(25):731.

Article  Google Scholar 

Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet. 2011;88(1):76–82.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bakshi A, Zhu Z, Vinkhuyzen AAE, Hill WD, McRae AF, Visscher PM, et al. Fast set-based association analysis using summary data from GWAS identifies novel gene loci for human complex traits. Sci Rep. 2016;6(1):1–9.

Article  Google Scholar 

Dunning M, Lynch A, Eldridge M. illuminaHumanv4.db: Illumina HumanHT12v4 annotation data (chip illuminaHumanv4); 2015.

Delaneau O, Ongen H, Brown AA, Fort A, Panousis NI, Dermitzakis ET. A complete tool set for molecular QTL discovery and analysis. Nat Commun. 2017;8(1):1–7.

Article  Google Scholar 

Schmiedel BJ, Singh D, Madrigal A, Valdovino-Gonzalez AG, White BM, Zapardiel-Gonzalo J, et al. Impact of genetic polymorphisms on human immune cell gene expression. Cell. 2018;175(6):1701-1715.e16.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Carmona FD, Cénit MC, Diaz-Gallo L-M, Broen JCA, Simeón CP, Carreira PE, et al. New insight on the Xq28 association with systemic sclerosis. Ann Rheum

留言 (0)

沒有登入
gif