Brown RJ, Araujo-Vilar D, Cheung PT, Dunger D, Garg A, Jack M, et al. The diagnosis and management of lipodystrophy syndromes: a multi-society practice guideline. J Clin Endocrinol Metab. 2016;101:4500–11.
Article CAS PubMed PubMed Central Google Scholar
Özen S, Akıncı B, Oral EA. Current diagnosis, treatment and clinical challenges in the management of lipodystrophy syndromes in children and young people. J Clin Res Pediatr Endocrinol. 2020;12:17–28.
Article PubMed PubMed Central Google Scholar
Vigouroux C, Guénantin AC, Vatier C, Capel E, Le Dour C, Afonso P, et al. Lipodystrophic syndromes due to LMNA mutations: recent developments on biomolecular aspects, pathophysiological hypotheses and therapeutic perspectives. Nucleus. 2018;9:235–48.
Article PubMed PubMed Central Google Scholar
Kobayashi N, Nakahara M, Oka M, Saeki K. Additional attention to combination antiretroviral therapy-related lipodystrophy. World J Virol. 2017;6:49–52.
Article PubMed PubMed Central Google Scholar
Falcao CK, Cabral MCS, Mota JM, Arbache ST, Costa-Riquetto AD, Muniz DQB, et al. Acquired lipodystrophy associated with nivolumab in a patient with advanced renal cell carcinoma. J Clin Endocrinol Metab. 2019;104:3245–8.
Smedmyr B, Wibell L, Simonsson B, Oberg G. Impaired glucose tolerance after autologous bone marrow transplantation. Bone Marrow Transplant. 1990;6:89–92.
Taskinen M, Saarinen-Pihkala UM, Hovi L, Lipsanen-Nyman M. Impaired glucose tolerance and dyslipidaemia as late effects after bone-marrow transplantation in childhood. Lancet. 2000;356:993–7.
Article CAS PubMed Google Scholar
Lorini R, Cortona L, Scaramuzza A, De Stefano P, Locatelli F, Bonetti F, et al. Hyperinsulinemia in children and adolescents after bone marrow transplantation. Bone Marrow Transplant. 1995;15:873–7.
Wei C, Thyagiarajan MS, Hunt LP, Shield JP, Stevens MC, Crowne EC. Reduced insulin sensitivity in childhood survivors of haematopoietic stem cell transplantation is associated with lipodystropic and sarcopenic phenotypes. Pediatr Blood Cancer. 2015;62:1992–9.
Article CAS PubMed Google Scholar
Bizzarri C, Pinto RM, Ciccone S, Brescia LP, Locatelli F, Cappa M. Early and progressive insulin resistance in young, non-obese cancer survivors treated with hematopoietic stem cell transplantation. Pediatr Blood Cancer. 2015;62:1650–5.
Article CAS PubMed Google Scholar
Adachi M, Asakura Y, Muroya K, Goto H, Kigasawa H. Abnormal adipose tissue distribution with unfavorable metabolic profile in five children following hematopoietic stem cell transplantation: a new etiology for acquired partial lipodystrophy. Clin Pediatr Endocrinol. 2013;22:53–64.
Article PubMed PubMed Central Google Scholar
Diker-Cohen T, Cochran E, Gorden P, Brown RJ. Partial and generalized lipodystrophy: comparison of baseline characteristics and response to Metreleptin. J Clin Endocrinol Metab. 2015;100:1802–10.
Article CAS PubMed PubMed Central Google Scholar
Fiorenza CG, Chou SH, Mantzoros CS. Lipodystrophy: pathophysiology and advances in treatment. Nat Rev Endocrinol. 2011;7:137–50.
Article CAS PubMed Google Scholar
Nagayama A, Ashida K, Moritaka K, Hidaka M, Gobaru M, Tanaka S, et al. Metreleptin supplementation for improving lipid and glycemic profiles in acquired diabetes lipodystrophy: a case report. J Endocr Soc. 2019;3:2179–83.
Article PubMed PubMed Central Google Scholar
Adachi M, Muroya K, Hanakawa J, Asakura Y. Metreleptin worked in a diabetic woman with a history of hematopoietic stem cell transplantation (HSCT) during infancy: further support for the concept of’HSCT-associated lipodystrophy. Endocr J. 2021;68:399–407.
Article CAS PubMed Google Scholar
Japan: The National Statistic Center. Portal Site of Official Statistics of Japan. http://e-stat.go.jp. (in Japanese). 2017. Accessed 12 Nov 2020.
Shibata Y, Nakatsuka A, Eguchi J, Miyamoto S, Masuda Y, Awazawa M, et al. Acquired partial lipoatrophy as graft-versus-host disease and treatment with metreleptin: two case reports. J Med Case Rep. 2018;12:368.
Article PubMed PubMed Central Google Scholar
Nagayama A, Ashida K, Watanabe M, Moritaka K, Sonezaki A, Kitajima Y, et al. Case report: metreleptin and SGLT2 inhibitor combination therapy is effective for acquired incomplete lipodystrophy. Front Endocrinol (Lausanne). 2021;12: 690996.
Bamba V. Update on screening, etiology, and treatment of dyslipidemia in children. J Clin Endocrinol Metab. 2014;99:3093–102.
Article CAS PubMed Google Scholar
Lorenc A, Hamilton-Shield J, Perry R, Stevens M, group CHAaMLEW. Body composition after allogeneic haematopoietic cell transplantation/total body irradiation in children and young people: a restricted systematic review. J Cancer Surviv. 2020;14:624–42.
Article PubMed PubMed Central Google Scholar
Zammouri J, Vatier C, Capel E, Auclair M, Storey-London C, Bismuth E, et al. Molecular and cellular bases of lipodystrophy syndromes. Front Endocrinol (Lausanne). 2021;12: 803189.
Schoonjans K, Peinado-Onsurbe J, Lefebvre AM, Heyman RA, Briggs M, Deeb S, et al. PPARalpha and PPARgamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. EMBO J. 1996;15:5336–48.
Article CAS PubMed PubMed Central Google Scholar
Yamashita S, Masuda D, Matsuzawa Y. Pemafibrate, a new selective PPARα modulator: drug concept and its clinical applications for dyslipidemia and metabolic diseases. Curr Atheroscler Rep. 2020;22:5.
Article CAS PubMed PubMed Central Google Scholar
Arai H, Yamashita S, Yokote K, Araki E, Suganami H, Ishibashi S, et al. Efficacy and safety of pemafibrate versus fenofibrate in patients with high triglyceride and low HDL cholesterol levels: a multicenter, placebo-controlled, double-blind, randomized trial. J Atheroscler Thromb. 2018;25:521–38.
Article CAS PubMed PubMed Central Google Scholar
Baykal AP, Parks EJ, Shamburek R, Syed-Abdul MM, Chacko S, Cochran E, et al. Leptin decreases de novo lipogenesis in patients with lipodystrophy. JCI Insight. 2020;5: e137180.
Article PubMed PubMed Central Google Scholar
Unger RH, Roth MG. A new biology of diabetes revealed by leptin. Cell Metab. 2015;21:15–20.
Article CAS PubMed Google Scholar
Moran SA, Patten N, Young JR, Cochran E, Sebring N, Reynolds J, et al. Changes in body composition in patients with severe lipodystrophy after leptin replacement therapy. Metabolism. 2004;53:513–9.
Article CAS PubMed Google Scholar
Aotani D, Ebihara K, Sawamoto N, Kusakabe T, Aizawa-Abe M, Kataoka S, et al. Functional magnetic resonance imaging analysis of food-related brain activity in patients with lipodystrophy undergoing leptin replacement therapy. J Clin Endocrinol Metab. 2012;97:3663–71.
Article CAS PubMed PubMed Central Google Scholar
Iwabu M, Yamauchi T, Okada-Iwabu M, Sato K, Nakagawa T, Funata M, et al. Adiponectin and AdipoR1 regulate PGC-1alpha and mitochondria by Ca(2+) and AMPK/SIRT1. Nature. 2010;464:1313–9.
Article CAS PubMed Google Scholar
Hashimoto H, Yamamoto M, Sugiura E, Abe H, Kagawa T, Goto M, et al. Adiponectin deficiency-induced diabetes increases TNFα and FFA via downregulation of PPARα. J Vet Med Sci. 2018;80:662–6.
Article CAS PubMed PubMed Central Google Scholar
Robbins DC, Danforth EJ Jr, Horton ES, Burse RL, Goldman RF, Sims EA. The effect of diet on thermogenesis in acquired lipodystrophy. Metabolism. 1979;28:908–16.
Article CAS PubMed Google Scholar
Koo E, Foss-Freitas MC, Meral R, Ozer M, Eldin AJ, Akinci B, et al. The metabolic equivalent BMI in patients with familial partial lipodystrophy (FPLD) compared with those with severe obesity. Obesity (Silver Spring). 2021;29:274–8.
Tanaka T, Kusakabe T, Ebihara K, Aizawa-Abe M, Aotani D, Yorifuji T, et al. Practice guideline for lipodystrophy syndromes-clinically important diseases of the Japan Endocrine Society (JES). Endocr J. 2021;68:1027–42.
Article CAS PubMed Google Scholar
Nomura H, Son C, Aotani D, Shimizu Y, Katsuura G, Noguchi M, et al. Impaired leptin responsiveness in the nucleus accumbens of leptin-overexpressing transgenic mice with dysregulated sucrose and lipid preference independent of obesity. Neurosci Res. 2022;177:94–102.
Article CAS PubMed Google Scholar
Suyama S, Maekawa F, Maejima Y, Kubota N, Kadowaki T, Yada T. Glucose level determines excitatory or inhibitory effects of adiponectin on arcuate POMC neuron activity and feeding. Sci Rep. 2016;6:30796.
Article CAS PubMed PubMed Central Google Scholar
Baker KS, Chow EJ, Goodman PJ, Leisenring WM, Dietz AC, Perkins JL, et al. Impact of treatment exposures on cardiovascular risk and insulin resistance in childhood cancer survivors. Cancer Epidemiol Biomark Prev. 2013;22:1954–63.
Comments (0)