Comparative Transcriptome Analysis Reveals Genetic Mechanism for Flowering Response in Two Wheat (Triticum aestivum L.) Cultivars

Kardailsky, I., Shukla, V.K., Ahn, J.H., et al., Activation tagging of the floral inducer FT, Science, 1999, vol. 286, pp. 1962—1965.

Article  CAS  PubMed  Google Scholar 

Fornara, F., de Montaigu, A., and Coupland, G., SnapShot: control of flowering in Arabidopsis, Cell, 2010, vol. 141, no, 3, p. 550.

Article  PubMed  Google Scholar 

Khan, M.R., Ai, X.Y., and Zhang, J.Z., Genetic regulation of flowering time in annual and perennial plants, Wiley Interdiscip. Rev.: RNA, 2014, vol. 5, no. 3, pp. 347—359.

Article  CAS  PubMed  Google Scholar 

Song, Y.H., Shim, J.S., Kinmonth-Schultz, H.A., et al. Photoperiodic flowering: time measurement mechanisms in leaves, Annu. Rev. Plant Biol., 2015, vol. 66, pp. 441—464.

Article  CAS  PubMed  Google Scholar 

Chen, Z., Ke, W., He, F., et al., A single nucleotide deletion in the third exon of FT-D1 increases the spikelet number and delays heading date in wheat (Triticum aestivum L.), Plant Biotechnol. J., 2022, vol. 20, no. 5, pp. 920—933.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, A., Li, C., Hu, W., et al., Phytochrome C plays a major role in the acceleration of wheat flowering under long-day photoperiod, Proc. Natl. Acad. Sci. U.S.A., 2014, vol. 111, no. 28, pp. 10037—10044.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fu, D., Szucs, P., Yan, L., et al., Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat, Mol. Genet. Genomics, 2005, vol. 273, no. 1, pp. 54—65. https://doi.org/10.1007/s00438-005-0045-0

Article  CAS  PubMed  Google Scholar 

Yan, L., Loukoianov, A., Blechl, A., et al., The wheat VRN2 gene is a flowering repressor down-regulated by vernalization, Science, 2004, vol. 303, no. 5664, pp. 1640—1644.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, H., Li, T., Wang, Y., et al., TaZIM-A1 negatively regulates flowering time in common wheat (Triticum aestivum L.), J. Integr. Plant Biol., 2019, vol. 61, no. 3, pp. 359—376.

Article  CAS  PubMed  Google Scholar 

Su, P., Sui, C., Wang, S., et al., Genome-wide evolutionary analysis of AUX/IAA gene family in wheat identifies a novel gene TaIAA15-1A regulating flowering time by interacting with ARF, Int. J. Biol. Macromol., 2023, no. 227, pp. 285—296.

Zhang, D.J., Zhang, X.X., Xu, W., et al., TaGW2L, a GW2-like RING finger E3 ligase, positively regulates heading date in common wheat (Triticum aestivum L.), Crop J., 2022, no.10, pp. 972—979.

Ma, L., Ma, S.W., Deng, Q., et al., Identification of wheat inflorescence development-related genes using a comparative transcriptomics approach, Int. J. Genomics, 2018, р. 6897032.

Pearce, S., Kippes, N., Chen, A., et al., RNA-seq studies using wheat PHYTOCHROME B and PHYTOCHROME C mutants reveal shared and specific functions in the regulation of flowering and shade-avoidance pathways, BMC Plant Biol., 2016, vol. 16, no. 1, p. 141.

Article  PubMed  PubMed Central  Google Scholar 

Diallo, A.O., Agharbaoui, Z., Badawi, M.A., et al., Transcriptome analysis of an mvp mutant reveals important changes in global gene expression and a role for methyl jasmonate in vernalization and flowering in wheat, J. Exp. Bot., 2014, vol. 65, no. 9, pp. 2271—2286.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Van Gessel, C., Hamilton, J., Tabbita, F., et al., Transcriptional signatures of wheat inflorescence development, Sci. Rep., 2022, vol. 12, no. 1, р. 17224.

Article  CAS  PubMed  Google Scholar 

Cui, G., Chai, H., Yin, H., et al., Full-length transcriptome sequencing reveals the low-temperature-tolerance mechanism of Medicago falcata roots, BMC Plant Biol., 2019, vol. 19, no. 1, p. 575.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cockram, J., Jones, H., Leigh, F.J., et al., Control of flowering time in temperate cereals: genes, domestication, and sustainable productivity, J. Exp. Bot., 2007, vol. 58, no. 6, pp. 1231—1244.

Article  CAS  PubMed  Google Scholar 

Beales, J., Turner, A., Griffiths, S., et al., A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.), Theor. Appl. Genet., 2007, vol. 115, no. 5, pp. 721—733.

Article  CAS  PubMed  Google Scholar 

Suárez-López, P., Wheatley, K., Robson, F., et al., CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis, Nature, 2001, vol. 410, no. 6832, pp. 1116—1120.

Article  PubMed  Google Scholar 

Zhang, W., Zhao, G., Gao, L., et al., Functional studies of heading date-related gene TaPRR73, a paralog of Ppd1 in common wheat, Front. Plant Sci., 2016, no. 7, р. 772.

Zhang, Z., Chen, J., Su, Y., et al., TaLHY, a 1R-MYB transcription factor, plays an important role in disease resistance against stripe rust fungus and ear heading in wheat, PLoS One, 2015, vol. 10, no. 5, р. e0127723.

Article  PubMed  PubMed Central  Google Scholar 

Qin, Z., Bai, Y., Muhammad, S., et al., Divergent roles of FT-like 9 in flowering transition under different day lengths in Brachypodium distachyon, Nat. Commun., 2019, vol. 10, no. 1, p. 812.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zou, L., Pan, C., Wang, M.X., et al., Progress on the mechanism of hormones regulating plant flower formation, Yi Chuan, 2020, vol. 42, no. 8, pp. 739—751.

PubMed  Google Scholar 

Fukazawa, J., Ohashi, Y., Takahashi, R., et al., DELLA degradation by gibberellin promotes flowering via GAF1-TPR-dependent repression of floral repressors in Arabidopsis, Plant Cell, 2021, vol. 33, no. 7, pp. 2258—2272.

Article  PubMed  PubMed Central  Google Scholar 

Wang, F., Gao, Y., Liu, Y., et al., BES1-regulated BEE1 controls photoperiodic flowering downstream of blue light signaling pathway in Arabidopsis, New Phytol., 2019, vol. 223, no. 3, pp. 1407—1419.

Article  CAS  PubMed  Google Scholar 

Hwang, K., Susila, H., Nasim, Z., et al., Arabidopsis ABF3 and ABF4 transcription factors act with the NF-YC complex to regulate SOC1 expression and mediate drought-accelerated flowering, Mol. Plant, 2019, vol. 12, no. 4, pp. 489—505.

Article  CAS  PubMed  Google Scholar 

Riboni, M., Robustelli Test, A., Galbiati, M., et al., ABA-dependent control of GIGANTEA signaling enables drought escape via up-regulation of FLOWERING LOCUS T in Arabidopsis thaliana, J. Exp. Bot., 2016, vol. 67, no. 22, pp. 6309—6322.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bao, S., Hua, C., Shen, L., et al., New insights into gibberellin signaling in regulating flowering in Arabidopsis, J. Integr. Plant Biol., 2020, vol. 62, no. 1, pp. 118—131.

Article  CAS  PubMed  Google Scholar 

Jing, S., Sun, X., Yu, L., et al., Transcription factor StABI5-like 1 binding to the FLOWERING LOCUS T homologs promotes early maturity in potato, Plant Physiol., 2022, vol. 189, no. 3, pp. 1677—1693.

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif