Effect of Multidrug Resistance Gene and AGTR1 (1166A>C) Gene Polymorphism on Hypertension and Its Relationship with Antihypertensive Effect of Valsartan

Jane, H.Y. and Joseph, L., Emerging role of precision medicine in cardiovascular disease, Circ. Res., 2018, vol. 122, no. 9, pp. 1302—1315. https://doi.org/10.1161/CIRCRESAHA.117.310782

Article  CAS  Google Scholar 

Mabhida, S.E., Lebohang, M., Mandeep, K., et al., Hypertension in African populations: review and computational insights, Genes, 2021, vol. 12, no. 4, р. 532. https://doi.org/10.3390/genes12040532

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jacek, R., Beata, F., Magdalena, R., et al., Pharmacogenomics of hypertension treatment, Int. J. Mol. Sci., 2020, vol. 21, no. 13, р. 4709. https://doi.org/10.3390/ijms21134709

Article  CAS  Google Scholar 

Ji, L.D., Nelson, L.S., Tang Xu, Z.F., et al., Genes regulate blood pressure, but “environments” cause hypertension, Front. Genet., 2020, vol. 11. https://doi.org/10.3389/fgene.2020.580443

Dhanachandra, S., Ajay, J., Harpreet, K., et al., Gender specific association of RAS gene polymorphism with essential hypertension: a case—control study, BioMed. Res. Int., 2014, vol. 2014. https://doi.org/10.1155/2014/538053

Marcin, C., Jerzy, G., Anna, G., et al., Blood pressure, arterial stiffness and endogenous lithium clearance in relation to AGTR1 and AGTR2 gene polymorphisms, J. Renin—Angiotensin—Aldosterone Syst., 2016, vol. 17, р. 171470320316655669. https://doi.org/10.1177/1470320316655669

Article  CAS  Google Scholar 

Roseline, W.K., Yoshihiro, S., Wai, S., et al., Association and interaction effect of AGTR1 and AGTR2 gene polymorphisms with dietary pattern on metabolic risk factors of cardiovascular disease in Malaysian adults, Nutrients, 2017, vol. 9, pp. 853—853. https://doi.org/10.3390/nu9080853

Article  CAS  Google Scholar 

Ines, N., Gideon M., Irene, G., et al., Are “functionally related polymorphisms” of renin—angiotensin—aldosterone system gene polymorphisms associated with hypertension, BMC Cardiovasc. Disord., 2010, vol. 10, p. 23. https://doi.org/10.1186/1471-2261-10-23

Article  CAS  Google Scholar 

Fung, M., Rao, F., Sameer, P., et al., Early inflammatory and metabolic changes in association with AGTR1 polymorphisms in prehypertensive subjects, Am. J. Hypertens., 2011, vol. 24, pp. 225—233. https://doi.org/10.1038/ajh.2010.210

Article  CAS  PubMed  Google Scholar 

Barbieri, A., Nopnithi, T., Talha, S., et al., Structure of ABCB1/P-glycoprotein in the presence of the CFTR potentiator ivacaftor, Membranes, 2021, vol. 11, p. 923. https://doi.org/10.3390/membranes11120923

Article  CAS  PubMed  PubMed Central  Google Scholar 

Piet, B. and Alfred, H.S., P-glycoprotein ABCB1: a major player in drug handling by mammals, J. Clin. Invest., 2013, vol. 123, pp. 4131—4133. https://doi.org/10.1172/JCI70430

Article  CAS  Google Scholar 

Seven, M., Batar, B., Unal, S., et al., The drug-transporter gene MDR1 C3435T and G2677T/A polymorphisms and the risk of multidrug-resistant epilepsy in Turkish children, Mol. Biol. Rep., 2014, vol. 41, no. 1, pp. 331—336. https://doi.org/10.1007/s11033-013-2866-y

Article  CAS  PubMed  Google Scholar 

Liu, J., Hui, R.T., and Song, L., Precision cardiovascular medicine in China, J. Geriatr. Cardiol., 2020, vol. 17, pp. 638—641. https://doi.org/10.11909/j.issn.1671-5411.2020.10.005

Article  PubMed  PubMed Central  Google Scholar 

Anderson, S.D., Asna, T., Jae, K., et al., In silico prediction of ARB resistance: a first step in creating personalized ARB therapy, PLoS Comput. Biol., 2020, vol. 16, р. e1007719. https://doi.org/10.1371/journal.pcbi.1007719

Ojha, U., Sanjay, R., Navukkarasu, S., et al., Current and emerging classes of pharmacological agents for the management of hypertension, Am. J. Cardiovasc. Drugs, 2021, vol. 22, pp. 271—285. https://doi.org/10.1007/s40256-021-00510-9

Article  PubMed  PubMed Central  Google Scholar 

Robles, N.R., Cerezo, I., and Hernandez-Gallego, R., Renin—angiotensin system blocking drugs, J. Cardiovasc. Pharmacol. Ther., 2014, vol. 19, pp. 14—33. https://doi.org/10.1177/1074248413501018

Article  CAS  PubMed  Google Scholar 

GBD 2013 Risk Factors Collaborators, Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risk factors or clusters of risks in 188 countries, 1990—2013: a systematic analysis for the Global Burden of Disease Study 2013, Lancet, 2015, vol. 386, pp. 2287—2323. https://doi.org/10.1016/S0140-6736(15)00128-2

Li, Y.C., Wang, L.M., Jiang, Y., et al., Prevalence of hypertension among Chinese adults in 2010, Zhonghua Yu Fang Yi Xue Za Zhi, 2012, vol. 46, pp. 409—413.

PubMed  Google Scholar 

Devi, P., Rao, M., Sigamani, A., et al., Prevalence, risk factors and awareness of hypertension in India: a systematic review, J. Hum. Hypertens., 2013, vol. 27, pp. 281—287. https://doi.org/10.1038/jhh.2012.33

Article  CAS  PubMed  Google Scholar 

Ingrid, A.W. and Fadi, J.C., Epigenetic modifications in essential hypertension, Int. J. Mol. Sci., 2016, vol. 17, р. 451. https://doi.org/10.3390/ijms17040451

Article  CAS  Google Scholar 

Arnett, D.K., Claas, S., and Lynch, A.I., Has pharmacogenetics brought us closer to ‘personalized medicine’ for initial drug treatment of hypertension?, Curr. Opin. Cardiol., 2009, vol. 24, pp. 333—339. https://doi.org/10.1097/HCO.0b013e32832c58ba

Article  PubMed  PubMed Central  Google Scholar 

Charoen, P., Jakris, E., Nisakron, T., et al., Contribution of four polymorphisms in renin-angiotensin-aldosterone-related genes to hypertension in a Thai population, Int. J. Hypertens., 2019, vol. 2019, р. 4861081. https://doi.org/10.1155/2019/4861081

Article  CAS  PubMed  PubMed Central  Google Scholar 

Parchwani, D.N., Digisha, D., Jairam, R., et al., Analysis of association of angiotensin II type 1 receptor gene A1166C gene polymorphism with essential hypertension, Indian J. Clin. Biochem., 2018, vol. 33, pp. 53—60. https://doi.org/10.1007/s12291-017-0644-7

Article  CAS  PubMed  Google Scholar 

Curnow, K.M., Pascoe, L., and White, P.C., Genetic analysis of the human type-1 angiotensin receptor, Mol. Endocrinol., 1992, vol. 6, no. 7, pp. 1113—1118. https://doi.org/10.1210/mend.6.7.1508224

Article  CAS  PubMed  Google Scholar 

Shi, Z., Wang, J., Chen, S., et al., Relationship between A1166C polymorphism of angiotensin II type 1 receptor gene and arteriosclerosis: a protocol for systematic review and meta-analysis, Medicine (Baltimore), 2021, vol. 100, р. e24407. https://doi.org/10.1097/MD.0000000000024407

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin, J.H., Drug—drug interaction mediated by inhibition and induction of P-glycoprotein, Adv. Drug Delivery Rev., 2003, vol. 55, pp. 53—81. https://doi.org/10.1016/s0169-409x(02)00171-0

Article  CAS  Google Scholar 

Singh, K., Szabolcs, T., Zsuzsanna, G., et al., Effects of polyphenols on P-glycoprotein (ABCB1) activity, Pharmaceutics, 2021, vol. 13, р. 2062. https://doi.org/10.3390/pharmaceutics13122062

Article  CAS  PubMed  PubMed Central  Google Scholar 

Silverton, L., Dean, M., and Moitra, K., Variation and evolution of the ABC transporter genes ABCB1, ABCC1, ABCG2, ABCG5 and ABCG8: implication for pharmacogenetics and disease, Drug Metab. Drug Interact., 2011, vol. 26, pp. 169—179. https://doi.org/10.1515/DMDI.2011.027

Article  CAS  Google Scholar 

Petryszyn, P., Robert, D., Agnieszka, G., et al., C3435T polymorphism of the ABCB1 gene in Polish patients with inflammatory bowel disease: a case—control and meta-analysis study, Genes, 2021, vol. 12, pp. 1419—1419. https://doi.org/10.3390/genes12091419

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nguyen, T., Duong, V., and Maeng, H., Pharmaceutical formulations with P-glycoprotein inhibitory effect as promising approaches for enhancing oral drug absorption and bioavailability, Pharmaceutics, 2021, vol. 13, p. 1103. https://doi.org/10.3390/pharmaceutics13071103

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deppe, S., Rainer, H.B., Johanna, W., et al., Telmisartan: a review of its pharmacodynamic and pharmacokinetic properties, Expert Opin. Drug Metab. Toxicol., 2010, vol. 6, pp. 863—871. https://doi.org/10.1517/17425255.2010.494597

Article  CAS  PubMed  Google Scholar 

Saaby, L., Tfelt-Hansen, P., and Brodin, B., The putative P-gp inhibitor telmisartan does not affect the transcellular permeability and cellular uptake of the calcium channel antagonist verapamil in the P-glycoprotein expressing cell line MDCK II MDR1, Pharmacol. Res. Perspect., 2015, vol. 3, р. e00151. https://doi.org/10.1002/prp2.151

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sychev, D., Shikh, N., Morozova, T., Grishina, E., Ryzhikova, K., and Malova, E., Effects of ABCB1 rs1045642 polymorphisms on the efficacy and safety of amlodipine therapy in Caucasian patients with stage I–II hypertension, Pharmacogenomics Pers. Med., 2018, vol. 11, pp. 157—165. https://doi.org/10.2147/PGPM.S158401

Article  CAS  Google Scholar 

Schwarz, U.I., Gramatte, T., Krappweis, J., et al., P‑glycoprotein inhibitor erythromycin increases oral bioavailability of talinolol in humans, Int. J. Clin. Pharm. Ther., 2000, vol. 38, pp. 161—164. https://doi.org/10.5414/cpp38161

Article  CAS  Google Scholar 

Dhananajay, P. and Ashim, K., MDR and CYP3A4 mediated drug—drug interactions, J Neuroimmune Pharmacol., 2006, vol. 1, pp. 323—326. https://doi.org/10.1007/s11481-006-9034-2

Article  Google Scholar 

留言 (0)

沒有登入
gif